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Abstract

S-adenosyl-L-methionine (SAM) is a coenzyme and the most commonly used

methyl-group donor for the modification of metabolites, DNA, RNA and pro-

teins. SAM biosynthesis and SAM regeneration from the methylation reaction

product S-adenosyl-L-homocysteine (SAH) take place in the cytoplasm. There-

fore, the intramitochondrial SAM-dependent methyltransferases require the

import of SAM and export of SAH for recycling. Orthologous mitochondrial

transporters belonging to the mitochondrial carrier family have been identified

to catalyze this antiport transport step: Sam5p in yeast, SLC25A26 (SAMC) in

humans, and SAMC1-2 in plants. In mitochondria SAM is used by a vast num-

ber of enzymes implicated in the following processes: the regulation of replica-

tion, transcription, translation, and enzymatic activities; the maturation and

assembly of mitochondrial tRNAs, ribosomes and protein complexes; and the

biosynthesis of cofactors, such as ubiquinone, lipoate, and molybdopterin.

Mutations in SLC25A26 and mitochondrial SAM-dependent enzymes have

been found to cause human diseases, which emphasizes the physiological

importance of these proteins.
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1 | INTRODUCTION

S-adenosyl-L-methionine (SAM, also known as AdoMet)
is a cofactor found in all known species and thought to
be the second most commonly used enzyme substrate
after adenosine-5'-triphosphate (ATP).1 It is synthesized
in the cytoplasm from ATP and methionine, which in
humans is an essential amino acid. SAM is formed by a
covalent bond between the sulfur atom of methionine
and the 5'-carbon of adenosine derived from ATP, which
give rise to a positively charged sulfonium ion (Figure 1).
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homocysteine; LIAS, lipoyl synthase; MC, mitochondrial carrier;
MOCO, molybdenum cofactors; MS, methionine synthase; MAT, S-
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5’methylthioadenosine; mtDNA, mitochondrial DNA; SAC, S-
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The properties of SAM used in catalysis are the electro-
philic carbon centers adjacent to the positively charged
sulfur atom, its ionic nature, and its radical reactivity.2

SAM is the major methyl-donor reagent for essential
methylation reactions of targets ranging from small
metabolites to large biological macromolecules. These
reactions are catalyzed by methyltransferases (MTs),
which transfer the methyl group of the SAM sulfonium
ion to O, N, C or S atoms of their substrates and give rise
to S-adenosyl-L-homocysteine (SAH).3 SAH may be
recycled into SAM in the cytoplasm by the methionine/
SAM cycle. In various organisms, SAM-dependent MTs
are encoded by about 1% of the genes and are found in
cytoplasm, nucleus, chloroplasts, and mitochondria.4

SAM is also used as a cofactor or a cosubstrate by
enzymes different from MTs for transfer of functional
groups of SAM (other than the methyl group) and by the
SAM-radical enzymes.2

Approximately 30% of cellular SAM has been esti-
mated to be located in mitochondria.5 SAM needs to be
imported into mitochondria from the cytoplasm, and its
uptake was first observed in isolated rat-liver mitochon-
dria.6 Subsequently, the proteins transporting SAM
across the mitochondrial membrane and their corre-
sponding genes were identified in humans, plants, and
yeast.7–9 These orthologous transporters are members of
the mitochondrial carrier (MC) family, which is named
solute carrier family 25 (SLC25) in higher animals. MCs
have characteristic sequence features, a six-
transmembrane α-helical fold and transport specific sub-
strates, such as cofactors, nucleotides, amino acids, dicar-
boxylates, and inorganic anions.10–17 In the
mitochondrial matrix, SAM is used for methylating DNA,
RNA, and proteins, and for the biosynthesis of cofactors
such as lipoate, ubiquinone (Coenzyme Q), and molyb-
dopterin, as well as for biotin production in yeast and
plants. Although the presence of methylated mitochon-
drial macromolecules had been known for quite some
time, most of the SAM-dependent enzymes responsible
for these modifications have been identified only in the

last 10 years.18–20 This review will focus on the mitochon-
drial transport and metabolism of SAM as well as on
associated genetic diseases.

2 | SAM BIOSYNTHESIS, USAGE,
AND RECYCLING

The biosynthesis of SAM depends on the availability of
the precursor methionine, which is synthesized by plants
and microorganisms but not by animals and is, therefore,
required in their diet. It has been suggested that the
transporters SLC1A5, SLC3A1, SLC6A14, SLC6A19, and
SLC6A20, among others, contribute to the intestinal
absorption and cellular import of methionine.21 In the
cytoplasm, methionine and ATP are condensed into SAM
by S-adenosylmethionine synthetase (methionine adeno-
syltransferase, MAT) (Figure 2) with pyrophosphate and
phosphate as byproducts.1 Many organisms contain mul-
tiple genes for MATs; in humans, there are two isoforms,
MATα1 is expressed only in hepatocytes,22 and MATα2,
which has 84% sequence identity with the former and is
found in non-hepatocyte cells together with its regulatory
subunit MATβ.23,24 SAM biosynthesis takes place exclu-
sively in the cytosol and nucleus except in hepatocytes
where MATα1 is partially localized to mitochondria.24–27

In cytoplasm, nucleus, mitochondria, and chloro-
plasts MTs use SAM as a methyl donor for modifications
of DNA, RNA, protein, lipids, and metabolites, producing
SAH as a byproduct. For example, in the cytoplasm SAM
is used for the methylation of nitrogen atoms in various
molecules to form adrenalin, phosphatidylcholine,
1-methylnicotinamide and creatine28–30; in the nucleus, it
is the major donor for methylations of DNA and histones
for transcriptional regulation, and of tRNA and rRNA in
their maturation; in plant chloroplasts, it is imported for
various roles in one-carbon metabolism.31

SAH formed in the methylation reactions in various
cellular compartments may be recycled into methionine
in the cytoplasm in the so-called methionine or SAM
cycle (Figure 2). S-adenosylhomocysteine synthase
(SAHase, also called adenosylhomocysteinase or S-
adenosylhomocysteine hydrolase) breaks down SAH into
adenosine and homocysteine (HCys). HCys may (i) be re-
methylated by methionine synthase (MS) or betaine-
HCys S-methyltransferase (BHMT), taking the methyl
group from 5-methyltetrahydrofolate or betaine, respec-
tively, to form methionine; (ii) enter the trans-sulfuration
pathway leading to the synthesis of cysteine for transla-
tion and glutathione production; or (iii) be exported to
the blood.32 MS has cobalamin as a cofactor, which, after
being employed in a round of catalysis, requires the activ-
ity of MS reductase to be reactivated.33,34 BHMT is most

FIGURE 1 SAM represented in ball-and-stick
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strongly expressed in liver and kidney, where it probably
plays a major role in methionine recycling.35,36 Methio-
nine formed in reactions (i) can be utilized to synthesize
SAM again. The SAM cycle is linked to the folate cycle
through MS which transfers a methyl group from
5-methyltetrahydrofolate forming tetrahydrofolate
(THF).37 The majority of the folate cycle one-carbon units
that are transferred onto HCys originally come from ser-
ine, which is converted into glycine in mitochondria by
serine hydroxymethyltransferase.38 THF and its struc-
tural analogs are another example of biological methyl-

group donors and are mostly involved in synthetic reac-
tions of nucleotides and amino acids.37 In order to con-
trol the SAM/SAH ratio, many of the enzymes of the
SAM and folate cycles are regulated at transcriptional
and enzymatic activity level through covalent modifica-
tions and allosteric interactions with SAM.37,39–41

Chemical groups of SAM other than the methyl group
are utilized by other enzymes (Figure 1).2 The SAM-
radical enzymes, which often contain iron–sulfur clus-
ters, split the cofactor into a methionine and 5'-
deoxyadenosine radical that is required in their catalysis.

FIGURE 2 SAM metabolism and transport in a typical human cell. The schematic overview shows SAM metabolism transporters

(yellow), SAM-using enzymes (red), enzymes metabolizing SAM (olive green), enzymatic reactions (black arrows), reactions with yet

unidentified enzymes (grey arrows) and SAM distribution (red arrows). 5'dAd, 5'-deoxyadenosine; ANTKMT, adenine nucleotide translocase

lysine (K) methyltransferase; ATPSCKMT, ATP synthase subunit C lysine methyltransferase; BHMT, betaine-homocysteine S-

methyltransferase; CDK5RAP1, CDK5 regulatory subunit associated protein; COQ, Coenzyme Q O-methyltransferase; cPMP, cyclic

pyranopterin monophosphate; CS, citrate synthase; CSKMT, citrate synthase lysine methyltransferase; DNMT, DNA methyltransferase;

ETFβ, electron transfer flavoprotein subunit β; ETFBKMT, electron transfer flavoprotein subunit β lysine (K) methyltransferase; FPP,

farnesyl pyrophosphate; HEMK1, MTRF1L glutamine (E) methyltransferase; LIAS, lipoyl synthase; METTL, methyltransferase-like protein;

MOCS1, molybdenum cofactor synthesis step 1; MRM, mitochondrial rRNA methyltransferase; MTR, methionine synthase; MTRF1L,

mitochondrial translational release factor 1-like; NDUFAF, NADH dehydrogenase ubiquinone complex I assembly factor; NSUN, NOP2/Sun

RNA methyltransferase; RSAD1, radical SAM domain-containing protein 1; SAHase, S-adenosylhomocysteine synthase; SAMS, SAM

synthase; TFB, mitochondrial transcription factor B; TRMT, tRNA methyl transferase
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Most MTs bind SAM with a "SAM-dependent MT fold"
consisting of a core structure of a mixed seven-stranded
β-sheet, that is similar to the parallel 5-stranded NAD(P)-
binding Rossmann fold.42–44 The SAM radical enzymes
on the other hand have a TIM-barrel (Triose-phosphate
Isomerase Mutase barrel) protein structure.45 Further-
more, for the maturation of tRNAs, SAM-dependent
tRNA ribosyltransferase-isomerase ribosylates tRNA leav-
ing adenine and methionine as byproducts. In the biosyn-
thesis of polyamines (spermidine and spermine), the
polyamine elongation enzymes transfer the propylamine
group of decarboxylated SAM giving rise to 50-deoxy-50-
methylthioadenosine (MTA).46 In addition, in biotin bio-
synthesis, the Cα-amino group of the SAM methionine is
donated in an amination reaction.

3 | MITOCHONDRIAL SAM
TRANSPORTERS

3.1 | The mitochondrial SAM
transporters are members of the MC family

Besides SAM, MCs have been found to transport various
substrates across the mitochondrial inner membrane:
cofactors (e.g. CoA, thiamine pyrophosphate, NAD+ and
FAD), nucleotides (e.g. ADP, ATP, and several dNTPs
and (d)AMPs), amino acids (e.g. aspartate, glutamate,
ornithine, and arginine), carboxylated metabolites
(e.g. 2-oxoglutarate, malate and citrate) and small inor-
ganic ions (phosphate and sulfate).47–51 The substrates of
most characterized MCs, including those of SAM trans-
porters, have been identified by the expression purifica-
tion reconstitution transport assay (EPRA) approach, in
which the protein is recombinantly expressed, purified,
and reconstituted into liposomes that are used in trans-
port assays.50,52,53 This approach has also been used to
determine other transport properties, among them the
kinetic parameters and transport modes, i. e. if the MC
catalyzes unidirectional (uniport) and/or exchange (anti-
port) transport of its substrates.48 Actually, most MCs
prefer the antiport mode of transport.54 The EPRA
approach has also been used to study the functional con-
sequences of the many MC mutations or variants found
in humans.55–57

The mitochondrial SAM carriers contain the typical
sequence features of MCs. Indeed, they consist of about
300 amino acid residues, that are divided into three,
almost equally long, sequence repeats each containing
two transmembrane segments linked by a signature motif
sequence PX[DE]XX[KR]X[KR]X20-30[DE]GXXXX[WYF]
[KR]G (PROSITE PS50920, PFAM PF00153, and
IPR00193).58,59 Atomic-resolution X-ray crystal structures

of the ADP/ATP carrier (AAC), which is an extensively
studied member of the MC family, presumably represent
the 3D-fold of all MCs.60–62 The AAC structures show
that the 300-residue MC fold consists of six transmem-
brane α-helices (H1-H6) in a barrel with a central sub-
strate translocation pore. The pore possesses two
alternatively opened or closed gates: one towards the
intermembrane space (cytoplasmic c-gate) and the other
towards the matrix (m-gate). Based on transport experi-
ments with several MCs and the AAC structures, the sub-
strate is thought to i) enter through the open gate from
one side of the membrane, ii) bind the substrate-binding
site located centrally in the translocation pore, iii) trigger
opening of the closed gate (and closing of the gate where
it entered) and iv) exit on the opposite side of the
membrane.63–69

The substrate-binding site of MCs has been proposed
to enclose centrally-located residues in the translocation
pore at the so-called contact points (I, II, and III) on H2,
H4 and H6, respectively, and surrounding residues.70–72

In particular, contact point II residues co-variate with the
major classes of MC substrates: G[IVLM] for nucleotides,
R[QHNT] for carboxylated metabolites and R[DE] for
amino acids. The latter motif has been suggested to bind
the Cα carboxylic and amino groups of amino acid sub-
strates.70,73 Notably, the SAM-transporting MCs, which
have R[DE] in contact point II, cluster together with the
MCs for amino acids rather than those for nucleotides in
phylogenetic analysis.74 Their evolutionary path would
therefore be associated with the methionine part of SAM
and not the adenosine portion of SAM, which in fact is a
nucleoside and not a nucleotide.

3.2 | The yeast mitochondrial SAM
carrier

One of the 35 MCs in S. cerevisiae, which is encoded by
YNL003c (PET8), has been identified as a SAM trans-
porter by the EPRA approach and named Sam5p.7

Besides SAM (Km of about 75 μM), Sam5p was shown to
transport SAH and the non-physiological, structurally
related substrates S-adenosylcysteine (SAC) and sinefun-
gin (adenosylornithine), but not other cofactors, nucleo-
tides, amino acids and carboxylated metabolites. Both
uniport and antiport transport of SAM were observed,
although the activity of the antiport reaction was much
higher. The subcellular localization and physiological
role of Sam5p in yeast were also investigated. The trans-
porter is localized in mitochondria as shown by analysis
of expressed Sam5p-GFP fusion protein in yeast. Sam5
knockout cells displayed a petite phenotype when grown
on non-fermentable carbon sources, whereas they were
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biotin auxotrophic on fermentable carbon sources
because biotin synthesis requires mitochondrial SAM.
Both phenotypes could be complemented by expressing a
mitochondrially-targeted version of Sam1p (one of the
two yeast SAM synthetases localized in the cytoplasm). It
was concluded that Sam5p imports SAM, by uniport or in
exchange for SAH, into mitochondria.7

3.3 | The human mitochondrial SAM
carrier

The human homolog of yeast Sam5p with 43% sequence
identity, SLC25A26 (SAMC), which is one of the
53 SLC25-members in humans, has also been character-
ized by the EPRA method.8 In common with the sub-
strate specificity of Sam5p, SAMC also transports SAM,
SAH, SAC, and sinefungin. However, at variance with
its yeast counterpart, SAMC has a higher affinity for
SAM (Km of about 23 μM) and seems capable of almost
only antiport transport of substrates. The mitochon-
drial localization of SAMC was demonstrated in CHO
cells expressing a GFP conjugate of the protein. The
organ distribution of SAMC was examined and its
mRNA was shown to be expressed widely in human tis-
sues, at very high levels in testis and at lower levels in
liver, brain, heart, kidney, lung, skeletal muscle, pan-
creas, small intestine, and spleen. Based on the bio-
chemical characterization of SAMC, its physiological
role was assigned as mitochondrial SAM import in
exchange for SAH.8

3.4 | The plant mitochondrial SAM
carriers

The transport properties of A. thaliana SAMC1
(At4g39460) and SAMC2 (At1g34065), which are homo-
logs of Sam5p and SAMC (31–34% sequence identity),
have also been investigated.9 By using the EPRA method
it was shown that AtSAMC1 has a similar substrate speci-
ficity to those of Sam5p and SAMC, a Km of 95 μM for
SAM and the ability of transporting its substrates by
mainly a counter-substrate mechanism. AtSAMC2 could
not be reconstituted functionally into liposomes; how-
ever, it can be assumed that it is a SAM transporter too,
due to its high sequence identity with AtSAMC1 (64%).9

Another study, where 6His-tagged AtSAMC1 was
expressed in yeast, purified and reconstituted into lipo-
somes that were used in transport assays, also showed
that AtSAMC1 transports SAM and SAH, and has a Km
for SAM of about 130 μM.75 The expression patterns of

AtSAMC1 and AtSAMC2 in different plant tissues were
analyzed by real-time reverse transcription PCR.9

AtSAMC1 mRNA was found in leaves, flowers, stems,
roots and, at particularly high levels, in seedlings,
whereas AtSAMC2 mRNA was found at lower levels
than AtSAMC1 in almost all organs analyzed. Further-
more, the promoter region of AtSAMC1 and AtSAMC2
was fused to the gene reporter β-glucuronidase. This
approach showed abundant expression of AtSAMC1 in
the roots of seedlings, the first leaves, the sepals of
flowers, the stigma of the pollen tubes, and the silique
vasculature, and no significant expression of
AtSAMC2.9

The subcellular localization of AtSAMC1 has been
suggested to be mitochondrial by analysis of the GFP-
fused protein.9 However, other reports have suggested
that AtSAMC1 is found in the chloroplast envelope mem-
brane based on: (i) the prediction of an N-terminal chlo-
roplast target peptide in AtSAMC1 by ChloroP/
TargetP,76,77 (ii) proteomic approaches77,78 and
(iii) mutations in AtSAMC1 causing a chloroplast
pigment-defective phenotype.79 The chloroplast envelope
localization of AtSAMC1 was further supported by the
plastidic targeting of expressed GFP fused to the N-
terminal 80 residues of AtSAMC1, which contain the pre-
dicted plastid targeting sequence, and by the fact that
knockout of AtSAMC1 leads to defects in prenyllipid and
chlorophyll biosynthesis, which are chloroplastic pro-
cesses.75 Moreover, immunoblots of AtSAMC1 in isolated
subfractionated organelles suggested chloroplast localiza-
tion, but the same protein band was also detected in the
mitochondrial fraction.75 This latter finding is in line
with another proteomic study that suggested dual target-
ing of AtSAMC1 to mitochondria and plastids.80 In con-
clusion, AtSAMC1 may be localized to both
mitochondria and plastids where it would mediate SAM
import in exchange for SAH.9

4 | MITOCHONDRIAL SAM
METABOLISM

In the mitochondrial matrix imported SAM is used by
many MTs to methylate mitochondrial DNA, RNA, pro-
teins, and metabolites, especially for cofactor biosynthe-
sis, producing SAH, which has to be exported to the
cytosol to be regenerated into SAM in the SAM cycle.
Furthermore, mitochondria also contain other SAM-
dependent enzymes that do not produce SAH. The mito-
chondrial MTs and other SAM-dependent enzymes are
listed in Table 1, whereas the metabolism in which they
are involved is illustrated in Figure 2.
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TABLE 1 Mitochondrial enzymes that use SAM

Substrate Gene name Protein name References

DNA

C5-deoxycytidine DNMT1 C5-deoxycytidine methyltransferase 82

C5-deoxycytidine DNMT3a/3b C5-deoxycytidine methyltransferase 83,84

N6-deoxyadenosine METTL4 N6-adenine methyltransferase 19

mRNA/tRNA/rRNA

U54 of tRNAs, U429 of 12S rRNA TRMT2B C5-uridine-methyltransferase 173

G9 and A9 of tRNAs, and adenines
of mRNA for ND5

TRMT10C N1-purine-methyltransferase 87,174

A59 of tRNAs, A947 in 16S rRNA
and adenines of mRNA for ND5

TRMT61B N1-adenine-methyltransferase 86,175,176

tRNA

Cytosine of tRNAs NSUN2 tRNA C5-cytosine methyltransferase 177,178

C34 (wobble base) of tRNAMet NSUN3 tRNA C5-cytosine-methyltransferase 164,179,180

G37 of tRNAs TRMT5 N1-guanine-methyltransferase 88

N6-(dimethylallyl)-A37 of tRNAs CDK5RAP1 tRNA C2- methylthiotransferase 181

rRNA

G1145 of 16S rRNA MRM1 rRNA 2'O-methyltransferase 1 182

U1369 of 16S rRNA MRM2 rRNA 2'O-methyltransferase 2 89,182

G1370 of 16S rRNA MRM3 rRNA 2'O-methyltransferase 3 89,182

C841 of 12S rRNA NSUN4 rRNA C5-cytosine methyltransferase 183,184

A936 and A937 of 12S rRNA TFB1M N6-dimethyladenosine transferase 1 185

A936 and A937 of 12S rRNA TFB2M N6-dimethyladenosine transferase 2 186

C839 of 12S rRNA METTL15 N4-cytidine- methyltransferase 187

m4C839 and m5C841 of 12S rRNA METTL17 N4/C5-methyltransferase-like protein 17 188

Protein

K395 of citrate synthase CSKMT Lysine (tri)methyltransferase 95,96

R85 of Complex I subunit NDUFS2 NDUFAF7 Arginine dimethyltransferase 94

K199 and K202 of ETFβ ETFBKMT Lysine trimethyltransferase 98,99

K43 of ATP synthase subunit C ATPSCKMT Lysine trimethyltransferase 101

K52 of AACs ANTKMT Lysine trimethyltransferase 102

Translation release factor MTRF1L HEMK1 MTRF1L glutamine methyltransferase 103

Lipoate

N6-octanoyl-L-lysyl-[protein] LIAS Lipoyl synthase 104

Ubiquinone

3,4-dihydroxy-5-all-trans-
polyprenylbenzoate

COQ3 Ubiquinone biosynthesis O-
methyltransferase

107

2-polyprenyl-6-methoxy-
1,4-benzoquinol

COQ5 2-methoxy-6-polyprenyl-1,4-benzoquinol
methylase

108

Molybdenum cofactor

GTP MOCS1 GTP 3',8-cyclase 110

Heme

Heme assembly RSAD1 Radical S-adenosyl methionine domain-
containing protein 1

112

189
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4.1 | Methylation of mitochondrial DNA

The human mitochondrial DNA (mtDNA) encodes
2 rRNAs, 22 tRNAs, and 13 polypeptides, which are all
subunits of the respiratory chain complexes and of ATP
synthase. The methylations found in mtDNA are
C5-methyldeoxycytidine (5mC) and in particular abun-
dance N6-methyldeoxyadenosine (6mA), which is usually
widespread in prokaryotes but less frequent in the
nuclear genome of mammals.19,81 DNA MTs (DNMT)
also found in nucleus have been proved to methylate
mtDNA: DNMT1, DNMT3a, and DNMT3b for 5mC; and
METTL4 for 6mA (Figure 2 and Table 1).19,82–84 Many
DNA MTs use a base flipping mechanism to access the
base to be methylated, similarly to base excision repair
enzymes.42 The level of mtDNA methylation is increased
in certain conditions, e.g. in hypoxia. Some mtDNA
methylations regulate mtDNA replication, by affecting
the copy number of mtDNA/mitochondrion, and tran-
scription, which thereby alters mitochondrial activity;
they may also work as epigenetic markers. Altered
mtDNA methylation patterns are associated with human
disorders, such as cancer, cardiovascular and neurode-
generative diseases, as well as aging.20,85

4.2 | SAM-dependent methylation of
mitochondrial RNA

Similar to what has been found in nuclear RNA, the
methylation of mitochondrial RNA mainly has a regula-
tory function in mRNA, and structural function in tRNA
and rRNA. N1-methyladenosine (m1A) is prevalent in
the mitochondrial-encoded mRNA, tRNA, and rRNA
transcripts, and is formed by the action of the SAM-
dependent TRMT61B and TRMT10C (Figure 2 and
Table 1).86,87 Interestingly, methylation of mitochondrial
mRNA may regulate translation, e. g. m1A modification
of ND5 mRNA causes repression of its translation.87 The
m1A modification is found at specific positions in mito-
chondrial tRNAs. Furthermore, TRMT10C/5, NSUN2-3,
TRMT2B, and CDK5RAP1 add site-specific methylations

to N1-guanine (forming m1G), C5-cytosine (m5C),
C5-uridine (m5U) and 2-thio-N6-(dimethylallyl)adeno-
sine (ms2i6A), respectively, of which some are found in
the wobble base position of the tRNAs (Figure 2 and
Table 1). Methylation of mitochondrial tRNA along with
other post-transcriptional modifications are required for
correct maturation and function.88

Compared to nuclear and bacterial rRNAs, mamma-
lian mitochondrial rRNAs have only nine methylated
sites, i.e. m5U429, m4C839, m5C841, m6A936, and
m6A937 in the small ribosomal subunit 12S rRNA;
m1A947 and 20-O-ribose methylations of G1145, U1369
and G1370 in the large subunit 16S rRNA.89,90 Specific
SAM-dependent MTs have been identified to be responsi-
ble for each position (Table 1). It is noteworthy that:
(i) TRMT61B also methylates mRNA and tRNA; and
(ii) CDK5RAP1 catalyzes a radical SAM reaction with
one of the two molecules of SAM used splitting the S-C
(5') bond (Figure 1) and giving rise to 5'-deoxyadenosine
and methionine.90 The rRNA methylations have been
found at the functionally important open cleft between
the small and large subunits of the mitochondrial ribo-
some: where mRNA interacts with the 12S rRNA, in the
Aminoacyl-site and in the Peptidyl-site.18 The action of
several mitochondrial rRNA MTs is coordinated with
ribosomal assembly factors for the orchestrated matura-
tion of the mitochondrial ribosome.91–93

4.3 | SAM-dependent methylation of
mitochondrial proteins

Methylations of mitochondrial proteins by specific SAM-
dependent MTs play roles in protein complex assembly
and protein-protein/protein-RNA interactions (Figure 2
and Table 1). Most of these MTs belong to the 7β-strand
protein family94 and many of them were originally called
METTL (MT like); later their names were changed
according to the abbreviation of their protein substrate
followed by the type of residue they methylate (e.g. K in
case of lysine) and MT. Here, the mitochondrial protein
MTs and their roles are briefly described approximately

TABLE 1 (Continued)

Substrate Gene name Protein name References

(RSAD2) (not exclusively
mitochondrial)

Radical S-adenosyl methionine domain-
containing protein 2

Biotin

(4R,5S)-dethiobiotin BIO2 (yeast and plant) Biotin synthase 114

(S)-8-amino-7-oxononanoate BIO3 (plant) DAPA aminotransferase 118
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in the order of their methylation targets in catabolism.
CSKMT (citrate synthase lysine (K) MT or METTL12)
predominantly trimethylates citrate synthase residue
p.Lys395, which is close to the active site, causing a small
reduction of activity that might contribute to the tricar-
boxylic acid (TCA) cycle regulation.95,96 NDUFAF7
(NADH dehydrogenase ubiquinone assembly factor 7),
which is one of the many complex I assembly factors,
dimethylates p.Arg85 in the NDUFS2 subunit symmetri-
cally (both the terminal nitrogens of the side chain guani-
dino group); this is an essential and early step in the
assembly of complex I by forming the initial nucleus of
the peripheral arm and its juncture with the membrane
arm.94,97 ETFBKMT (METTL20) trimethylates p.Lys199
and p.Lys202 in ETFβ (electron transfer flavoprotein
subunit β) and these modifications are important for
electron transfer, the recognition and binding of the
fatty acid oxidation, and one-carbon metabolism dehy-
drogenases.98,99 ATPSCKMT (FAM173B) trimethylates
p.Lys43 of the ATP synthase subunit C, this being essen-
tial for the correct incorporation of the subunit into the
ATP synthase complex.100,101 ANTKMT (FAM173A) tri-
methylates the ADP/ATP carriers SLC25A5 and
SLC25A6 (and most probably also SLC25A4) at p.Lys52,
located in the mitochondrial matrix loop between H1
and H2, giving rise to reduced respiration rate, which
may be explained by a diminished transport activity of
the ADP/ATP carrier.102 The MT HEMK1 methylates
the mitochondrial translation release factor (MTRF1L)
on the glutamine residues in the peptide anticodon
GGQ motif, which binds the mRNA UAA and UAG stop
codons.103

4.4 | SAM-dependent mitochondrial
biosynthesis of cofactors

Mitochondrial SAM is required for methylating several
metabolites that are intermediates in the biosynthesis of
various cofactors, such as lipoate, ubiquinone (Coenzyme
Q), molybdopterin, heme, and biotin (the latter only in
yeast and plant) (Figure 2 and Table 1).

4.4.1 | Lipoate biosynthesis

The cofactor lipoate is synthesized in mitochondria by
lipoyl synthase (LIAS) from octanoate (derived from
type II fatty acid synthesis), sulfur (donated from an
iron-sulfur cluster within LIAS), and SAM, which is
used in a radical reaction breaking it down to 5'-
deoxyadenosine and methionine.104,105 In mitochondria,
lipoate is subsequently covalently linked to the terminal

amino group of specific lysines in the H-protein of gly-
cine dehydrogenase (decarboxylase of the glycine cleav-
age system) and the E2 components of the four different
mitochondrial dehydrogenase complexes that couple
2-oxoacids to CoA: pyruvate dehydrogenase, oxogluta-
rate dehydrogenase, 2-oxoadipate dehydrogenase, and
branched-chain α-ketoacid dehydrogenase.

4.4.2 | Ubiquinone biosynthesis

Human biosynthesis of ubiquinone involves at least
10 polypeptides: PDSS1-2 (phenyl diphosphate synthase
subunit 1 and 2, corresponding to Coq1p in yeast) and
COQ2-COQ10.106 PDSS1-2 and COQ2 produce the benzo-
quinone ring condensed with an isoprenoid chain, which,
through various methylation, decarboxylation, hydroxyl-
ation, and deamination reactions catalyzed by
COQ3-COQ10, finally results in ubiquinone in the inner
mitochondrial membrane. In the human ubiquinone
biosynthesis, two SAM-dependent enzymes are
involved: COQ3 and COQ5. COQ3 is an O-methyltrans-
ferase, which substitutes the hydrogen on the
3-hydroxyl group of 3,4-dihydroxy-5-polyprenylbenzoate
with a methyl group, and COQ5 methylates carbon-3 of
the benzoquinol ring.107,108 Ubiquinone is a component
of the mitochondrial respiratory chain, which transfers
electrons from complex I, II, and electron transfer flavo-
protein ubiquinone oxidoreductase (ETFQO) to
complex III.

4.4.3 | Molybdopterin biosynthesis

The first step in the synthesis of molybdenum cofactors
(MOCO) is catalyzed by mitochondrial MOCS1, which
requires SAM for the conversion of GTP to cyclic pyra-
nopterin monophosphate (cPMP) by yet another radical
SAM reaction mechanism involving two iron–sulfur clus-
ters.109,110 The corresponding A. thaliana SAM-
dependent enzyme CNX2 is also found in mitochon-
dria.111 The mitochondrially-produced cPMP is exported
by an ABC transporter (in plant ABCB25) to the cytosol,
where MOCS2-3 and GPHN finalize the biosynthesis of
the organic pterin moiety that binds molybdenum. Four
molybdopterin-dependent enzymes have been identified
in mammals and they are all oxidases: the mitochondrial
intermembrane space sulfite oxidase (sulfur metabolism),
the outer mitochondrial membrane amidoxime-reducing
component (reduction of N-oxygenated molecules), the
cytoplasmic xanthine oxidase (purine catabolism) and
aldehyde oxidase (aromatic azaheterocycles and xenobi-
otic metabolism).
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4.4.4 | Heme-protein assembly

Human RSAD1 is a radical SAM enzyme (together with
CDK5RAP1 and LIAS), which, based on the characteriza-
tion of its bacterial homolog, is thought to function as a
heme chaperone involved in the heme-insertion into
enzymes.112

4.4.5 | Biotin biosynthesis

In microorganisms and plants, SAM is also used for the
biosynthesis of biotin (vitamin H or vitamin B7) required
for the action of two enzymes called Bio2p and Bio3p
(out of six Bio1p-6p) in yeast.113 In yeast, the last reaction
of biotin biosynthesis is catalyzed by biotin synthase
(Bio2p), which is a mitochondrial radical SAM enzyme
containing an iron-sulfur cluster.114 In Arabidopsis, the
enzyme corresponding to Bio2p is also found in the mito-
chondrial matrix115 together with Bio3p, which catalyzes
an earlier step in the pathway: the substitution of a keto
group in a biotin intermediate with the α-amino group of
the SAM methionine (an unusual mechanism) leaving S-
adenosyl-4-methylsulfanyl-2-oxobutanoate as a rest
product.116–118 In contrast, it is not clear whether yeast
Bio3p is mitochondrial. Animals are not capable of biotin
biosynthesis and take it up through absorption in the
digestive system by the sodium-dependent multivitamin
transporter SLC5A6, which also transports precursors for
other cofactors, such as pantothenate and lipoate.119 In
cells, biotin is added covalently onto specific lysine resi-
dues (in Met-Lys-Met sequences) of carboxylases by
biotin-protein ligase (holocarboxylase synthetase), which
is thought to be present both in the cytoplasm and in
mitochondria.120 Five carboxylases are known to contain
biotin, which is used as a cofactor: pyruvate carboxylase
(gluconeogenesis and lipogenesis), 3-methylcrotonyl-CoA
carboxylase (BCAA catabolism), propionyl-CoA carboxyl-
ase (BCAA and fatty acid catabolism), and acetyl-CoA
carboxylases 1 and 2 (fatty acid biosynthesis).121 Of note,
although these carboxylases have mitochondrial localiza-
tion with exception of acetyl-CoA carboxylase 1 isoform,
which is cytoplasmic, it is yet not known how biotin is
imported into animal mitochondria.

5 | DISEASES ASSOCIATED WITH
MITOCHONDRIAL SAM
TRANSPORT AND METABOLISM

Some genetic diseases are due to defects in the cytoplas-
mic SAM-cycle enzymes. For example, mutations in MS
and MS reductase cause Homocystinuria-megaloblastic

anemia,122,123 and mutations in MAT1A and SAHase
cause hypermethioninemia.124–126 In addition, several
diseases have been reported to be associated with alter-
ations of genes encoding proteins involved in mitochon-
drial SAM transport and metabolism (Table 2).

5.1 | Disorders associated with
mitochondrial SAM transport

Disease-causing mutations in SLC25A26 have been iden-
tified in three unrelated children, who exhibited symp-
toms of different severity ranging from mild muscle
weakness, lactic acidosis, cardiorespiratory insufficiency,
and developmental delay to respiratory/multiple organ
failure and death.127 The biochemical analysis of the
affected patients revealed several mitochondrial defects
in SAM-dependent processes (reduced 12S rRNA stabil-
ity; methylation of ETFβ and the AACs SLC25A5 and
SLC25A6; diminished ubiquinone and lipoic acid biosyn-
thesis) leading to dysfunctional translation and respira-
tory chain activity. The disease caused by mutations in
SLC25A26 has been classified as combined oxidative
phosphorylation deficiency 28 (COXPD28, Table 2) and
follows an autosomal recessive inheritance pattern. The
functional consequences of the three disease-causing
mutations on SAM transport were investigated thor-
oughly by introducing them into recombinant SLC25A26
constructs and examining (i) the complementation of the
growth defects of the Sam5 knockout S. cerevisiae strain,
and (ii) the transport activity through the EPRA
method.127 In the first approach, the qualitative conse-
quences of the mutations were evaluated in the yeast het-
erologous system. The expression of SLC25A26 wild-type
and the p.Ala102Val, p.Val148Gly, p.Pro199Leu or short
SAMC variants in S. cerevisiae SAM5 null mutant could
rescue the growth defects observed when grown on non-
fermentable carbon sources to various degrees
(Section 2.2).7,127 Wild-type SLC25A26 almost completely
restored the growth rate whereas the p.Val148Gly variant
only partially rescued it, and the p.Ala102Val, p.-
Pro199Leu and short SAMC did not affect the phenotype.
It was also shown that the latter variant was not targeted
to mitochondria. The second approach using the EPRA
method provides a quantitative measure of the mutation
effect on the transport capacity and has been employed
to assess the effects of many disease-causing mutations in
other MCs.128–139 The recombinantly expressed
SLC25A26 mutants p.Ala102Val, p.Pro199Leu and the
truncated variant displayed virtually abolished transport
activity, whereas p.Val148Gly was about 15% active com-
pared with the wild-type protein.127 The results of the
first and second approaches are therefore fairly well in
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agreement. The measured transport activities of the three
SLC25A26 deficiency point mutations appear to be corre-
lated with their position in the SLC25A26 homology
model: the inactive mutations are found inside the sub-
strate translocation pore (p.Ala102Val) and in the third
signature motif sequence (p.Pro199Leu), whereas the
somewhat active variant (p.Val148Gly) is located outside
of the pore. All three mutated residues are conserved and
are predicted to be of functional importance based on the
high single-nucleotide evolutionary rate in these posi-
tions.127,140 In addition, cysteine mutations of the resi-
dues corresponding to p.Ala102 and p.Pro199 of
SLC25A26 in the 2-oxoglutarate carrier (SLC25A11) have
been found to be inactive, whereas the substitution with
cysteine of the V148 counterpart in the 2-oxoglutarate
carrier had about 50% activity.141–143

Later, the effects of the p.Ala102Val, p.Val148Gly,
and p.Pro199Leu mutations in SLC25A26 were also eval-
uated in knockout organisms.144 In similarity to

SLC25A26 deficiency, the knockout of SLC25A26 in Dro-
sophila melanogaster and mouse causes decreased mito-
chondrial SAM levels, diminished biosynthesis of SAM-
dependent iron-sulfur clusters, cofactors, and metabolites
as well as impaired complex I stability and assembly of
the oxidative phosphorylation system.144 Mitochondrial
SAM import and SAM-related processes in the matrix of
the knockout fly were partially restored by complementa-
tion with D. melanogaster SLC25A26 containing the cor-
responding disease-causing mutations of p.Ala102Val
and p.Val148Gly, whereas the p.Pro199Leu variant
hardly affected the phenotype characteristics.

Since the discovery of the first three cases with
COXPD28,127 another three patients have been found.
Similar symptoms have been observed in a fourth patient
with the compound heterozygous SLC25A26 mutations
p.Ala12Pro and p.Ala66Glu.145 These two mutations are
located in the interface between H1 and H6, and between
H2 and H3, respectively, and are predicted to be

TABLE 2 Genetic diseases associated to mitochondrial SAM-dependent enzymes

Mutated
protein Disorder name

OMIM number/
inheritance

References of first
report

SLC25A26a Combined oxidative phosphorylation deficiency
28 (COXPD28)

616794/AR 127

DNMT1 AD Cerebellar ataxia, deafness, and narcolepsy
(ADCADN)

604121/AD 190

Neuropathy, hereditary sensory, type IE (HSN1E) 614116/AR 191

DNMT3a Somatic acute myeloid leukemia (AML) 601626 156

Heyn-Sproul-Jackson syndrome (HESJAS) 618724/AD 158

Tatton-Brown-Rahman syndrome (TBRS) 615879/AD 157

DNMT3b Immunodeficiency-centromeric instability-facial
anomalies syndrome 1 (ICF1)

242860/AR 160

Facioscapulohumeral muscular dystrophy 4
(FSHD4)

619478/DD 159

NSUN2 AR mental retardation 5 (MRT5) 611091/AR 161

NSUN3a Combined oxidative phosphorylation deficiency
48 (COXPD48)

619012/AR 164

TRMT5a Combined oxidative phosphorylation deficiency
26 (COXPD26)

616539/AR 88

TRMT10Ca Combined oxidative phosphorylation deficiency
30 (COXPD30)

616974/AR 166

MRM2a Mitochondrial DNA depletion syndrome 17
(MTDPS17)

618567/AR 167

LIASa Hyperglycinemia, lactic acidosis, and seizures
(HGCLAS)

614462/AR 168

COQ5a Coenzyme Q10 deficiency 9 (COQ10D9) 619028/AR 170

MOCS1a Molybdenum cofactor deficiency A (MOCODA) 252150/AR 171

Abbreviations: AD, autosomal dominant; AR, autosomal recessive; DD, digenic dominant.
aThought to be exclusively mitochondrial.
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pathogenic by in silico analysis. Recently, with whole-
exome sequencing, also fifth and sixth patients have been
found, which are adults carrying homozygous p.-
Glu135Gly and p.Arg142Gln mutations, respectively.146

In these two patients the symptoms, such as abdominal
pain, lactic acidosis, exercise intolerance, and mitochon-
drial myopathy, partly overlap with those of the pheno-
type described in the previously reported cases, but they
are milder. The two mutated residues are located in the
last part of the second signature motif of MCs ([DE]
GXXXX[WYF][KR]G) and in MC structures they form a
salt bridge between them. In addition, the arginine is
implicated in binding cardiolipin, which is necessary for
MC activity.147–150 Notably, the latter two mutant vari-
ants were expressed in mouse embryonic fibroblasts defi-
cient in SLC25A26 rescuing the phenotype, and the
D. melanogaster SLC25A26 variant corresponding to p.-
Arg142Gln was also expressed in the knockout Drosoph-
ila model, which died at early larvae developmental
stage.146 Because the two mutations apparently did not
have effect on the uptake of SAM by isolated mito-
chondria, as measured in the authors' experimental
setups, it was hypothesized that they had specific
effects on mitochondrial SAH export and not on SAM
import. However, the precise alterations in the trans-
port properties of the last four identified SLC25A26
mutations that trigger COXPD28 pathogenesis have
not been investigated with purified recombinant pro-
teins, such as in reconstituted liposomes using the
EPRA method.

Besides the mutated variants being responsible for
COXPD28, SLC25A26 has been found to be down-
regulated in cervical cancer cell lines through mecha-
nisms that involve promoter region methylations and the
transcription repressor FOXD3.151,152 Most probably the
reduced expression of SLC25A26 decreases mitochondrial
SAM import with the consequences of diminished
mtDNA methylation, biosynthesis of iron-sulfur clusters,
cofactors, etc. These effects are corroborated by some-
what opposite effects of SLC25A26 overexpression in
CaSki cells, where the levels of mitochondrial SAM and
mtDNA methylation increase leading to decreased
expression of respiratory complex subunits.151 In addi-
tion, SLC25A26 overexpression causes impairment of the
cytoplasmic SAM cycle through the accumulation of
HCys and increased production of glutathione.151 Inter-
estingly, a similar situation has been observed when
SLC25A26 expression was increased by the copper-
containing compound [Cu(ttpy-tpp)Br2]Br.

153 Therefore,
it is likely that altered SLC25A26 expression leads to an
imbalance of SAM levels in both mitochondria and cyto-
plasm with effects on SAM-dependent processes inside
and outside mitochondria.

5.2 | Disorders associated with
mitochondrial SAM metabolism

Some disorders are caused by mutations in the genes
encoding for DNMTs methylating mtDNA, DNMT1,
DNMT3a, and DNMT3b. These enzymes, as well as the
mitochondrial tRNA MT NSUN2, appear to be localized
both in mitochondria and nucleus/cytosol. Autosomal
dominant cerebellar ataxia, deafness and narcolepsy
(ADCADN), and Hereditary sensory neuropathy type IE
(HSN1E) (Table 2) are neurological and neurodegenera-
tive pathologies associated with mutations in DNMT1.
ADCADN is characterized by mitochondrial dysfunction
with decreased ATP production154 and both ADCADN
and HSN1E bears hallmarks common in mitochondrial
diseases. However, given that DNMT1 is also localized
outside the mitochondria, it is difficult to say whether the
symptoms are caused by reduced methylation in the
mitochondria.155 This is also true for the diseases caused
by mutations in DNMT3a and DNMT3b. DNMT3a often
contains somatic mutations associated with acute mye-
loid leukemia (AML).156 Mutations in the DNMT3a gene
cause the autosomal dominant genetic diseases Heyn-
Sproul-Jackson syndrome (HESJAS) and Tatton-Brown-
Rahman syndrome (TBRS), which are both characterized
by an impaired intellectual development dependent on
the reciprocally-related phenotypes of microcephalic
dwarfism and macrocephalic overgrowth, respec-
tively.157,158 Immunodeficiency-centromeric instability-
facial anomalies syndrome 1 (ICF1) and Facioscapulo-
humeral muscular dystrophy 4 (FSHD4) are caused by
mutations in DNMT3b, which also methylates nuclear
DNA.159,160 Moreover, various NSUN2 mutations have
been reported to cause the autosomal recessive mental
retardation-5 (MRT5) phenotype, which is characterized
by intellectual disability, facial dysmorphic features,
delayed psychomotor and speech development.161–163

However, since NSUN2 is localized to the cytoplasm and
nucleolus, it is not clear whether mitochondrial tRNA
methylation/mitochondrial translation has a role in
higher cognitive function.

Three of the about 50 forms of Combined oxidative
phosphorylation deficiency (COXPD) (Table 2) are linked
to mutations in genes encoding mitochondrial RNA MTs:
NSUN3, TRMT5, and TRMT10C, which are all thought
to be exclusively located in mitochondria. Mutations in
NSUN3 found in two patients cause COXPD48, which
exhibits microcephaly, developmental delay, muscle
weakness, external ophthalmoplegia, and lactic acido-
sis.164,165 COXPD48 patient fibroblasts showed lack of
methylation m5C in the anticodon of the mitochondrial
tRNAMet, leading to impaired mitochondrial translation
and subsequent defects in the mitochondrial respiratory
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chain and oxygen consumption. In two patients muta-
tions in TRMT5 have been thought to be responsible for
COXPD26, which is characterized by lactic acidosis,
hypertrophic cardiomyopathy or exercise intolerance and
deficiency of respiratory complexes I, III, and IV.88 Fur-
thermore, in these patients skeletal muscle hypomethyla-
tion of G37 in mitochondrial tRNAs was observed.
Moreover, mutations in the gene encoding TRMT10C
give rise to COXPD30.166 This disease has only been
reported in two patients, who presented hypotonia, feed-
ing difficulties, deafness, lactic acidosis, increased cere-
brospinal fluid lactate levels, and both died of respiratory
failure at 5 months of age. In addition, defective
TRMT10C, which methylates both mitochondrial tRNA
and mRNA, leads to reduced assembly of respiratory
complexes I, III and IV due to impaired mitochondrial
translation.

A single case of a homozygous missense mutation in
the MRM2 gene has been described as Mitochondrial
DNA depletion syndrome 17 (MTDPS17).167 The muta-
tion in MRM2, which is a mitochondrial MT involved in
the maturation of mitochondrial rRNA, leads to multiple
defects in the oxidative phosphorylation system and
mtDNA loss. MTDPS17 is a MELAS-like (mitochondrial
encephalopathy, lactic acidosis, and stroke-like episodes)
syndrome exhibiting childhood-onset, rapidly progressive
encephalomyopathy, and stroke-like episodes. MELAS is
caused by mutations in several different mtDNA genes,
among them the genes for many mitochondrial tRNAs,
and also in some nuclear genes encoding mitochondrial
proteins; it is primarily characterized by defects in oxida-
tive phosphorylation.

There are other rare genetic diseases, which are con-
nected to SAM-dependent cofactor enzymes: LIAS,
COQ5, and MOCS1. Three cases have been identified
with mutations in the gene encoding for LIAS, presenting
Hyperglycinemia, lactic acidosis, and seizures
(HGCLAS).168,169 Other symptoms of HGCLAS have
increased serum glycine and lactate levels in newborns
and severely delayed psychomotor development or
encephalopathy, which may lead to childhood death.
Furthermore, decreased lipoate production and decreased
levels of the E2 components of PDHc and OGDHc as well
as reduced activity of the glycine cleavage enzyme system
were observed. Coenzyme Q10 deficiency-9 (COQ10D9)
is caused by mutations in COQ5 and has been found in
three sisters.170 This disorder is characterized by cerebel-
lar ataxia associated with cerebellar atrophy, and often
also by intellectual disability and seizures. In cells from
the patients, the COQ5 mRNA and protein levels, as well
as the ubiquinone levels, were diminished, and defects in
respiratory complex II and III were observed. Like
patients suffering from several other genetic diseases

associated with ubiquinone biosynthesis, which com-
monly exhibit various neurological and muscular mani-
festations, patients with COQ10D9 responded to oral
ubiquinone treatment positively. MOCS1 mutations
cause molybdenum cofactor deficiency of complementa-
tion group A (MOCODA), a disease observed in several
cases.171,172 The symptoms of MOCODA appear in
infancy and are severe; they mainly consist of poor feed-
ing, intractable seizures, and severe psychomotor retarda-
tion, which most often lead to death in early childhood.
Dysfunctional molybdenum cofactor biosynthesis leads
to decreased serum uric acid and increased urine sulfite
levels due to deficiency of xanthine dehydrogenase and
sulfite oxidase, which both use molybdopterin. In addi-
tion, MOCODA patients display increased excretion of
taurine, S-sulfocysteine, hypoxanthine, and xanthine, of
which the latter accumulates and forms urinary xanthine
stones.

6 | CONCLUSIONS/PERSPECTIVES

This review highlights the many crucial roles of SAM, as
important methylating agent, essential cofactor, and gen-
erator of free radicals, in fundamental mitochondrial pro-
cesses such as replication, transcription, translation,
oxidative phosphorylation, and cofactor metabolism.
Essential for the mitochondrial SAM-dependent enzymes
is the MC-catalyzed import of SAM from the cytoplasm
and export of SAH produced, inside the mitochondria, in
the methylation reactions. In agreement with its impor-
tance in mitochondrial metabolism, SAMC is expressed
widely in human tissues and appears to be widespread in
eukaryotes ranging from fungi, plants, and animals.
Moreover, the genetic diseases associated with mitochon-
drial SAM transport and metabolism underline the
important roles of the cofactor in vital processes of this
organelle and the rest of the cell.

It is worth noting that the cytosolic/nuclear metabo-
lism and expenditure of SAM are connected with the
SAM-dependent processes in mitochondria through the
SAM/SAH ratio. First, the cytosolic SAM cycle largely
depends, besides from new "input" of methionine, on the
recycling of SAH (derived from the various cellular com-
partments) for the regeneration of SAM. Obviously, the
carriers catalyzing the translocation of SAM and SAH
across the mitochondrial membrane play a pivotal role in
this regard by directly linking the mitochondrial matrix
and cytosolic pools of these two compounds. Second, the
SAM cycle is also dependent on the other branches of the
one-carbon metabolism through its connection to the
folate cycle (which is partly confined in the mitochon-
drial matrix), and the biosynthesis of cysteine and
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glutathione from HCys. Unfortunately, the relationships
between the above-mentioned cytosolic/nuclear pro-
cesses, the SAM-dependent reactions within the mito-
chondria and the SAM/SAH ratios in these
compartments still need to be fully investigated.

Some issues of mitochondrial SAM transport and
metabolism are peculiar and not yet well understood.

A. Whereas yeast Sam5p, plant SAMC1, and SAMC2 are
capable of importing SAM into mitochondria via uni-
port transport, human SAMC appears to be catalyzing
almost exclusively antiport transport. Therefore,
given that not all matrix SAM is converted into SAH
for counter exchange, it is difficult to see how net
transfer of SAM into mitochondria is achieved. One
might speculate that i) the extremely low SAMC uni-
port activity is enough to satisfy the required quanti-
ties of SAM that are consumed by the mitochondrial
SAM radical enzymes, ii) the proton motif force of
energized mitochondria in vivo facilitates uniport
import of SAM having a net positive charge, iii) there
is another yet unidentified counter substrate of
SAMC; however, the most likely candidate, the
byproduct of SAM radical enzymes, 5'-deoxyadeno-
sine, is not transported by SAMC, or iv) there exists
another not yet known mitochondrial transporter for
SAM import.

B. Another unresolved problem is the possible dual
localization of Arabidopsis SAMC1 and SAMC2 in
mitochondria and chloroplasts. All methods used so
far for protein sub-cellular localization have their
drawbacks: isolated organelles may be contaminated;
proteomic identification in one organelle does not
exclude that the same protein is localized to another
organelle; and, using the N-terminal extension of
MCs or whole proteins fused to GFP may exclude,
conceal or obstruct targeting information. It should
be possible to clearly determine the organellar locali-
zation of SAMC1 and SAMC2 with alternative
approaches.

C. The mitochondrial MTs and other SAM-dependent
enzymes are very specific for their substrates and
the majority of them seem to have only one single
target, perhaps with the exception of the mtDNA
MTs and some of the RNA MTs. The substrate speci-
ficity (nucleic acid sequences or structural motifs) of
the latter enzymes and how they are regulated,
especially those for the regulatory methylations of
mtDNA and mRNA, have not yet been determined
satisfactorily. Furthermore, it is not clear in which
physiological circumstances and for which purposes
citrate synthase and the ADP/ATP carrier are
methylated.
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