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Simple Summary: Metabolic rewiring is now considered a hallmark of cancer. Pancreatic ductal
adenocarcinoma (PDAC) extensively rewires its metabolism especially for the utilization of glucose
and glutamine that are mainly used to provide the biosynthetic intermediates for nucleotides, protein,
and lipid synthesis and for redox homeostasis. In this regard, mitochondrial solute carriers play a key
role in metabolic compartmentalization and hence metabolic rewiring. At least five mitochondrial
transporters are involved in the metabolic reprogramming of PDAC. Targeting these transporters
may provide an attractive strategy to combat this aggressive cancer. This review dissects the current
knowledge about the role of these transporters in PDAC in order to explore the therapeutic potential
of their targeting.

Abstract: Pancreatic cancer is among the deadliest cancers worldwide and commonly presents
as pancreatic ductal adenocarcinoma (PDAC). Metabolic reprogramming is a hallmark of PDAC.
Glucose and glutamine metabolism are extensively rewired in order to fulfil both energetic and
synthetic demands of this aggressive tumour and maintain favorable redox homeostasis. The
mitochondrial pyruvate carrier (MPC), the glutamine carrier (SLC1A5_Var), the glutamate carrier
(GC), the aspartate/glutamate carrier (AGC), and the uncoupling protein 2 (UCP2) have all been
shown to influence PDAC cell growth and progression. The expression of MPC is downregulated
in PDAC and its overexpression reduces cell growth rate, whereas the other four transporters are
usually overexpressed and the loss of one or more of them renders PDAC cells unable to grow and
proliferate by altering the levels of crucial metabolites such as aspartate. The aim of this review is
to comprehensively evaluate the current experimental evidence about the function of these carriers
in PDAC metabolic rewiring. Dissecting the precise role of these transporters in the context of the
tumour microenvironment is necessary for targeted drug development.

Keywords: PDAC; metabolic rewiring; mitochondrial carriers; glutamine; aspartate

1. Introduction

Pancreatic cancer is the fourteenth most common cancer and the seventh leading cause
of cancer-associated death worldwide [1] and it is on the rise in Western countries. In the
United States, for instance, pancreatic cancer is ranked as the fourth cause of cancer-related
death and is predicted to be the second cause in 2030, thus overtaking breast and colorectal
cancers [2,3]. The high lethality of PDAC is mostly due to late diagnosis, the lack of effective
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treatments, and the invariable occurrence of drug resistance. The late diagnosis is caused by
the deferred onset of symptoms and the lack of specific biomarkers. On the other hand, the
relatively low incidence of PDAC does not justify population screenings based on current
technologies. In this scenario, more than 80% of patients are diagnosed with a locally
advanced unresectable primary tumour or metastatic disease and surgery is not curative.
Overall, pancreatic cancer patients have a poor 5-year survival of about 9% [4,5].

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic
cancer accounting for more than 90% of diagnosed cases [6]. PDAC arises as a result of the
malignant transformation of epithelial cells lining the ductal system that carries secretory
enzymes and other substances away from the pancreas [7]. Genetically, PDAC is a complex
malignancy involving aberrant chromosomal alterations, point mutations, and epigenetic
modifications [8,9]. In this regard, oncogenic KRAS, and the tumour suppressors TP53,
p16/CDKN2A, and SMAD4 are the most mutated genes in PDAC. KRAS is a small GTPase
associated with cell surface receptors such as tyrosine kinase, which, once stimulated,
activates various intracellular signalling pathways involved in cell proliferation, invasion,
and metastasis [10]. KRAS is considered the major driver of PDAC and is mutated early in
about 90% of PDAC cases, particularly in the elderly and in female patients [11].

Although the first observation of the metabolic changes in cancer highlighting that
tumour cells consume more glucose to produce lactate and energy even in the presence of
oxygen (known as the “Warburg effect”) was made a century ago, metabolic reprogramming
in cancer has gained its importance only in the past two decades. Currently, metabolic re-
programming is considered a major hallmark of cancer [12] and it is investigated for cancer
diagnosis, prognosis, and treatment [13,14]. PDAC is not an exception and its metabolism
is known to be extensively reprogrammed in pathways utilizing glucose, lipids, and amino
acids as nutrients [15]. For instance, PDAC cells markedly rewire their glucose metabolism
in favour of increased glucose consumption via aerobic glycolysis and lactate production
by upregulating both the glucose transporter (GLUT1) and glycolytic enzymes (such as
phosphofructokinase 1 (PFK1), hexokinase 2 (HK2), and lactate dehydrogenase A (LDHA)
(for reviews, see [16–19]) (Figure 1). Furthermore, another metabolic pathway tightly linked
to glycolysis and markedly rewired in PDAC is the pentose phosphate pathway (PPP) [20].
Mutated KRAS activates non-oxidative PPP by induction of the ribulose-5-phosphate iso-
merase (RPIA) gene via the MAPK-MYC-RPIA pathway [21] (Figure 1). Moreover, PDAC
cells markedly overexpressed monocarboxylate 1 and 4 transporters (MCT1 and MCT4,
respectively), which are the two major lactate transporters, thus reducing the pH burden
on glycolysis suppression and enabling NAD+ regeneration [22]. Lipid metabolism is also
extensively reprogrammed in PDAC by upregulating enzymes involved in fatty acid syn-
thesis including citrate synthase, ATP-citrate lyase (ACLY), acetyl-CoA carboxylase (ACC),
and fatty acid synthase (for reviews see [23,24]). Cancer cells need high levels of lipid
synthesis for membrane biogenesis and as signalling molecules or energy sources [25]. The
uptake and catabolism of branched-chain amino acids (BCAAs) are significantly increased
in PDAC cells, which, in turn, is linked to an increase in fatty acid synthesis. The lack
of concomitant significant changes in mitochondrial metabolism, i.e., tricarboxylic acid
(TCA) cycle intermediates and oxygen consumption rate, suggests that PDAC cells can use
BCAA-derived acetyl-CoA as a precursor for fatty acid synthesis [26]. The metabolism of
amino acids is also extensively rewired in PDAC. In particular, it is well demonstrated that
PDAC cells use glutamine to replenish TCA cycle intermediates and provide nitrogen for
the biosynthesis of purines, pyrimidines, non-essential amino acids, nicotinamide adenine
dinucleotide (NAD), and glucosamine, as well as redox equivalents (NADPH) required
for fatty acid synthesis and ROS scavenging [27,28] (Figure 1). Furthermore, PDAC takes
up collagen from the tumour microenvironment through micropinocytosis, and collagen-
derived amino acids are used as TCA intermediates to generate energy or building blocks
useful for macromolecule synthesis, thus promoting PDAC survival under nutrient-limited
conditions [29]. Likewise, the metabolic enzymes of one-carbon metabolism are upregu-
lated in PDAC and associated with poor overall survival. These enzymes catalyze a series
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of metabolic reactions generating intermediates required for nucleotide synthesis and DNA
methylation crucial for the cross talk of genetic and epigenetic alterations [30].
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Figure 1. A synopsis of metabolic pathways rewiring in KRAS-mutant PDAC cell lines. KRAS
enhances both glucose and glutamine uptake in PDAC cell lines. Glucose is metabolized merely
through aerobic glycolysis to produce intermediates used for pentose phosphate and hexosamine
pathways as well as lactate. Glutamine can directly be used for protein and nucleotide synthesis or
fluxed into mitochondria where it is converted to aspartate by the action of glutaminase and GOT2.
Produced aspartate is transported to the cytosol where it is incorporated into protein or used for
synthesis of nonessential amino acids and nucleotides. PDAC cells use aspartate for the generation of
NADPH and reduced glutathione by action of GOT1, MDH1, and ME1 to control the redox home-
ostasis. HBP, hexosamine biosynthetic pathway; PPP, pentose phosphate pathway; TCA, Krebs cycle;
GLS, glutaminase; GOT1, glutamate-oxaloacetate transaminase 1; GOT2, glutamate-oxaloacetate
transaminase 2; GR, glutathione reductase; MDH1, cytosolic malate dehydrogenase; ME1, cytosolic
malic enzyme; α-KG, α-ketogluturate; Asp, aspartate; Glu, glutamate; Gln, glutamine; GSH, reduced
glutathione; GSSG, oxidized glutathione; Lac, lactate; Mal, malate; OA, oxaloacetate; Pyr, pyru-
vate; R5B, ribose-5-phosphate; ROS, reactive oxygen species; UDP-GlcNAc, Uridine diphosphate
N-acetylglucosamine.

In the extensive metabolic reprogramming of PDAC cells, mitochondria play an ac-
tive role, particularly in the rewiring involving glutamine and aspartate metabolism [31].
Glutamine enters the mitochondria where it is metabolized to replenish TCA cycle inter-
mediates and to produce energy in the form of FADH2 and NADH and aspartate. The
latter is transported to the cytosol where it is incorporated to proteins or participates in
nucleotide synthesis and/or provides redox equivalents essential for fatty acid synthesis
and ROS elimination [32]. However, these metabolites cannot diffuse freely across the
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inner mitochondrial membrane, and specific carriers are needed to enable their transport
to and from the mitochondria. Mitochondrial transporters play a central role in the com-
partmentalization of these metabolic pathways [33]. Thus, mitochondrial transporters play
crucial roles in the metabolic rewiring and many of them are found to be dysregulated
in PDAC. In the present review, we aimed to critically and comprehensively gather the
current knowledge about the role of five mitochondrial transporters known to be involved
in the metabolic rewiring of PDAC. Readers interested in the role of plasma membrane
transporters in pancreatic cancer are referred to published reviews [34,35].

2. The Glutamine Transporter SLC1A5_Var Is at the Centre of Glutaminolysis

Glutamine, the most abundant amino acid in human plasma, is used by cancer cells
for versatile metabolic roles including the synthesis of proteins, nucleotides, lipids, and
non-essential amino acids, or it acts as an exchanger for the transport of other amino
acids [36,37]. Glutamine is also metabolized into glutamate, which enters the TCA cycle as
α-ketoglutarate (α-KG) to be used for energy harvesting, generation of precursors for glu-
coneogenesis, and synthesis of antioxidants such as glutathione and NADPH [37]. Cancer
cells show extreme dependence on glutamine for their growth and survival, a phenomenon
known as “glutamine addiction” [38]. In particular, this holds true for PDAC cells, as the
rewiring of their metabolism towards glutamine reliance is well documented. In this regard,
pancreatic cancer cells deprived of glutamine drastically lose their ability of growth [28].
Glutamine metabolism in PDAC is initiated by the glutaminase (GLS), a critical enzyme that
converts glutamine into glutamate, the first metabolic reaction of glutaminolysis [27,28].
Human GLS is encoded by two genes, GLS and GLS2, localized on chromosomes 2 and
12, respectively. GLS encodes two transcripts arising from alternative splicing: a long
isoform (KGA; containing the 1–14 and 16–19 exons) found in the brain, and a short isoform
(GAC; containing the first 15 exons) usually overexpressed in cancers [39]. Similarly, GLS2
encodes two transcripts named GAB and LGA, arising from transcription driven by surro-
gate promoters. GLS2 is transcriptionally regulated by TP53 and it is hypermethylated in
several cancers such as glioblastoma and hepatocellular carcinoma, suggesting that it is a
tumour suppressor gene [40,41]. Indeed, forced expression of GLS2 into the glioblastoma
cell lines U87MG and LN229 sensitizes them to the alkylating agent Temozolomide and
H2O2-mediated oxidative stress by suppressing the PI3K/AKT pathway [42].

In PDAC, the GLS isoform GAC plays a key role in upregulating glutaminolysis and
thus glutamine metabolic rewiring [28]. GLS seems to be regulated at transcriptional,
post-transcriptional, and post-translational level. In this regard, Kim et al. found that the
transcription factor EB (TFEB) could directly bind to the GLS promoter and upregulate
its expression in PDAC cell lines. TFEB knockdown resulted in the downregulation of
GLS expression and glutamine metabolism and consequent tumour growth suppression
both in vitro and in xenograft models [43]. GLS is also post-transcriptionally regulated by
increasing mRNA stability, for instance, by repressing the expression of miR-23a/b (an
inhibitor of GAC) the oncogenic MYC upregulates its expression [44]. Interestingly, a recent
study in PDAC showed that GAC is post-translationally regulated through succinylation.
In this regard, P38 mitogen activated protein kinase (MAPK) phosphorylates succinyl-CoA
ligase [ADP-forming] subunit β (SUCLA2) at ser-79, leading to GLS-SUCLA2 dissociation,
which in turn enhances GLS K311 succinylation and ultimately increases its activity [45].

Despite reports showing that GAC is localized in the inner mitochondria membrane,
the exact localization of its catalytic domain has not yet been elucidated [46–48]. Clarifying
this aspect is of paramount importance because if the catalytic site faces the intermembrane
space, then a glutamate transporter will be required. On the contrary, if the catalytic
side faces the matrix, then a glutamine transporter would be needed [49] (Figure 2). If
the former holds true, it would be critical to investigate whether the glutamate enter the
matrix via AGC or GC, which can both efficiently perform the task. However, these two
transporters are different regarding the export of aspartate. In essence, if the glutamate
entered through AGC, then the aspartate produced in the matrix could exit through this
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transporter in exchange for glutamate. On the other hand, if glutamate entered through
GC, then an aspartate exporter, such as UCP2, is needed. Evidence in PDAC shows that
glutamine is transported via SLC1A5_Var from the cytosol to matrix (see below), and
aspartate is transported via UCP2 that is also known to be overexpressed in PDAC cells
(discussed later).
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Figure 2. Role of mitochondrial solute carriers in PDAC metabolic rewiring. Depending on the
localization of GLS either in the matrix or in the intermembrane space, two scenarios are proposed.
In the first (red lines), glutamine is transported to the matrix through SLC1A5_Var and converted
by the action of GLS localized in the matrix to glutamate which in turn is metabolized to aspartate
and transported out of mitochondria by uncoupling protein 2 (UCP2). In the second (green and
violet lines), glutamine is converted to glutamate by GLS localized in the intermembrane space and
glutamate thus produced is transported to the matrix by glutamate carrier (GC) (green lines) or
aspartate–glutamate carrier (AGC) (violet dashed lines) and glutamate-derived aspartate exists the
mitochondria through UCP2 (green lines) or AGC itself (violet dashed lines), respectively. In the
cytosol, aspartate reacts with α-KG by GOT1 to produce glutamate and oxaloacetate. The latter is
reduced into malate by the action of MDH1 and malate is converted by ME1 to pyruvate and NADPH
used for GSSG reduction and ROS control. Finally, in PDAC, mitochondrial pyruvate carrier (MPC)
is downregulated hence reducing glucose flux towards OXPHOS and increases lactate production.
TCA, Krebs cycle; AGC, aspartate–glutamate carrier; GLS, glutaminase; GC, glutamate carrier; GDH,
glutamate dehydrogenase; GOT1, cytosolic glutamate-oxaloacetate transaminase; GOT2, matrix
glutamate-oxaloacetate transaminase; GR, glutathione reductase; LDH1, lactate dehydrogenase;
MDH1, cytosolic malate dehydrogenase; ME1, cytosolic malic enzyme; MPC, mitochondrial pyruvate
carrier; UCP2, uncoupling protein 2; α-KG, α-ketoglutarate; Asp, aspartate; Glc, glucose; Glu,
glutamate; Gln, glutamine; GSH, reduced glutathione; GSSG, oxidized glutathione; Lac, lactate; Mal,
malate; Pyr, pyruvate; OA, oxaloacetate; ROS, reactive oxygen species.

The search for the mitochondrial glutamine transporter began in the 1970s [50]. How-
ever, only recently has light been shed on this transporter. In this regard, Yoo and col-
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leagues showed that the gene encoding the plasma membrane sodium-dependent neutral
amino acid transporter SLC1A5 (also designated as ASCT2) has two different transcription
initiation sites. The second transcription site occurs in the first intron, and results in a
shorter transcript lacking exon 1 and encoding a 339 amino acid protein therein defined
as SLC1A5_Var that is localized in the inner mitochondrial membrane and seems to be
responsible for the influx of glutamine towards the matrix [51].

This transporter, similarly to the mitochondrial pyruvate carrier (MPC) [52,53], lacks a
tripartite structure characterizing the mitochondrial carrier family SLC25 [54–57]. SLC1A5_Var
is overexpressed in several adenocarcinomas and its increased levels were reported to be
associated with poor prognosis [51]. Hypoxia can induce the expression of SLC1A5_Var
via HIF-2α. A functional analysis involving knockdown and overexpression showed that
SLC1A5_Var plays an active role in the upregulation of glutaminolysis favouring improved
redox homeostasis and the induction of gemcitabine resistance in pancreatic cancer, thus
suggesting an oncogenic role for SLC1A5_Var [27,51]. This is crucial because PDAC is
generally characterized by severe hypoxia arising from the dense desmoplastic stroma,
poor vascularization, and high proliferation rate of cancerous cells, leading to an imbalance
between oxygen consumption and supply [58]. Accordingly, once transported into the
mitochondria, glutamine is converted into glutamate by glutaminase. Glutamine-derived
glutamate is further converted into aspartate and α-KG by the action of the mitochondrial
glutamate-oxaloacetate transaminase 2 (GOT2) [28]. Then, aspartate is transported to
the cytosol, where it is incorporated into proteins, and used for nucleotide synthesis, but
also for the generation of NADPH reducing equivalents for ROS scavenging and redox
homeostasis [59,60] (Figure 2). Conversely, SLC1A5_Var silencing can result in increased
ROS level, and decreased glutaminolysis and GSH/GSSG ratio [58]. Unfortunately, the
study where this finding was reported did not measure the levels of cytosolic aspartate.
However, a reduction is expected upon SLC1A5_Var knockdown, as a positive associa-
tion between glutaminolysis and cytosolic aspartate levels has been reported by other
groups [28,32,61]. It should be noted here that concerns have been raised regarding this
variant as a mitochondrial glutamine carrier [62]. These concerns are in regards to the
method used for mitochondrial signal peptide prediction, to the antibodies used for its
detection, as well as to the lack of the first 203 amino acids forming four transmembrane
helices of the SLC1A5, which are predicted to be crucial for the interaction with lipid
bilayers, thus questioning the capability of this N-terminal truncated SLC1A5_Var to act
as a transporter [62]. Hence, further experimental evidence confirming its mitochondrial
localization and its transport function by in vitro assays in liposomes is urgently needed
before any potential of SLC1A5_Var as a therapeutic target can be considered.

3. Mitochondrial Glutamate Carriers: SLC25A22 and SLC25A18

The glutamate present in the cytosol obtained either from diet or protein degradation
and/or from the interconversion of other amino acids is transported into mitochondria by
glutamate carriers (GC). In humans as in other organisms, two different isoforms are known,
GC1 and GC2, encoded by the SLC25A22 and SLC25A18 genes, respectively [63,64]. Both
carriers catalyze glutamate–proton symport into the matrix, but the two proteins show dif-
ferent tissue expression levels and kinetics properties [63,65] (Figure 2). In KRAS-mutated
PDAC, glutamine-derived glutamate appears to bypass the need for a mitochondrial gluta-
mate carrier, as supported by the discovery of the glutamine carrier described above [51]
(Figure 2). However, this notion should be treated with caution. First, GC1 is known to
be highly expressed in the pancreas at the mRNA and protein levels [63,66]. Second, in
KRAS-mutated colorectal cancer (CRC), SLC25A22 was shown to be essential for CRC cell
growth in glutamine-containing media and in xenograft models [67]. In this regard, Wong
et al. showed that SLC25A22 expression is upregulated in KRAS-mutated CRC cell lines
and tumour tissue compared to wild-type KRAS cell lines and adjacent non-tumour tissues,
respectively [67]. SLC25A22 silencing in KRAS-mutated CRC cell lines reduces glutamine
metabolism, as revealed by a reduction in TCA cycle intermediates including succinate,
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fumarate, malate, oxaloacetate, and aspartate, and this was rescued by aspartate supple-
mentation [67]. SLC25A22 glutamate transport function seems crucial for cell proliferation,
in vitro migration, and invasion and for tumour metastasis in xenograft models, and it was
associated with poor prognosis in patients [67]. Glutamate-derived aspartate enhances
glucose metabolism via regeneration of NAD+, and ameliorates redox homeostasis in
favour of cell growth, migration, and invasion [67]. Third, knocking down SLC25A22 in
the KRAS-mutated PDAC cell line SW1990 was shown to suppress colony formation and
raises questions about the dispensability of the glutamate carrier in PDAC cells as a result
of SLC1A5_Var glutamine carrier expression [67]. Finally, GC1 is also overexpressed in
osteosarcoma and gallbladder cancer (GBC) [68,69]. Gain of function (overexpression) of
GC1 resulted in promotion of GBC cell lines proliferation as well as tumour growth and
metastasis in xenograft models. Conversely, GC1 silencing induced GBC cell apoptosis
by the downregulation of Bcl-2 and by the upregulation of cleaved PARP, cytochrome-c,
and BAX mediated by the MAPK/ERK pathway [69]. In osteosarcoma, overexpression
of SLC25A22 increased osteosarcoma cells proliferation, invasion, and migration in vitro,
as well as tumour growth and lung metastasis of in vivo xenograft models. Furthermore,
SLC25A22 expression was associated with poor patient survival. SLC25A22 was associated
with a reduced expression of phosphatase and tensin homolog (PTEN) and an increased
phosphorylation of protein kinase b (Akt) and Focal Adhesion Kinase (FAK) [68].

SLC25A18 is poorly studied in the context of cancer, including pancreatic cancer.
Interestingly, SLC25A18 is downregulated in colorectal cancer, and its overexpression
reduces the Warburg effect and cell proliferation, and it was associated with a longer
disease-free survival time. SLC25A18 suppressed the expression of CTNNB1, PKM2,
LDHA, and MYC indicating that its tumour suppressive effect might be mediated by the
inhibition of the Wnt/β-catenin pathway [70]. These studies indicate that there are open
questions about the role of GC1 and GC2 in PDAC, which deserve further investigation.

4. The Aspartate–Glutamate Carriers SLC25A12 and SLC25A13

The aspartate–glutamate carriers AGC1 and AGC2 can also transport glutamate into
the matrix. They belong to the mitochondrial carrier family SLC25 and are transcribed
from two different nuclear genes, namely SLC25A12 (also called aralar1) and SLC25A13
(also called citrin) [71,72]. Both aralar1 and citrin exchange in a Ca2+-dependent manner
mitochondrial aspartate for cytosolic glutamate (which may also be generated in the
intermembrane space) plus one proton [73] (Figure 2). The Ca2+-dependent stimulation of
both aralar1 and citrin is enabled by the presence of a unique long N-terminal extension
harbouring a number of EF-hand motifs and facing the intermembrane space [74]. Although
AGC1 and AGC2 catalyze the same transport, they show specific tissue expression: AGC1
is mainly expressed in the heart, brain, and skeletal muscles, while AGC2 is expressed in
the liver, gallbladder, and gastrointestinal tract, among others [73,75]. Together with the
malate/α-ketoglutarate carrier (also called 2-oxoglutarate carrier, OGC), AGC1 and AGC2
form the malate–aspartate shuttle, which is responsible for shuttling NADH reducing
equivalents from the cytosol to mitochondria [76,77].

Although the dysregulated function of AGC1 and AGC2 has been widely investi-
gated in the context of inborn errors (for more details, see [78–81]), their role in cancer
is scarcely known. In this regard, AGC2 was found to be overexpressed in melanoma
cancer cell lines and is associated with enhanced cell proliferation, invasion, and poor
prognosis [82,83]. AGC2 is also overexpressed in CRC cell lines under glucose-depleted
conditions and associated with increased tumour aggressiveness and poor prognosis [84].
As reported by Alkan et al., AGC1 silencing reduces the proliferation rate of C2C12 cells
as well as LLC1 and H1299 (lung), PANC1 and Capan2 (pancreatic), and Hela (cervical)
cancer cells, due to impaired aspartate metabolism [85]. This was particularly evident in
glutamine-depleted media and was reversed by aspartate supplementation. In glutamine-
replete media, AGC1 silencing did not block cell proliferation, suggesting the existence of
another transporter that allows aspartate to exit mitochondria. In fact, AGC1 knockdown
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potentiated the effects of the mitochondria glutaminase inhibitor CB-839 in vivo. This is
consistent with a model where AGC1 is involved in mitochondrial aspartate export under
glutamine-limiting conditions, while an alternative mitochondrial carrier characterized by
a higher Km value for aspartate replaces AGC1 under high glutamine concentration [85,86].
In this regard, the uncoupling protein 2 (UCP2) present in the inner mitochondrial mem-
brane is capable of transporting mitochondrial aspartate in exchange for phosphate plus
a proton [87] (Figure 2). UCP2 has a Km value for aspartate of 6.84 mM, which is about
100-fold higher than that of AGC that is about 50 µM [73]. A similar mechanism could be
at play in regard to the entry of glutamate into mitochondria of CRC and PDAC cells medi-
ated by GC1 as discussed above [67]. GC1 has a Km value for glutamate of 5.18 mM [63],
which is 30-fold higher than that of AGCs. Overall, evidence suggests that in cancers
with highly rewired glutamine metabolism such as PDAC, the flux of aspartate and glu-
tamate occurs via mitochondrial carriers having a high Km value, which are not easily
saturable. Indeed, GC1 and UCP2 (discussed below) have been shown to play a key role
in the glutamine metabolic rewiring in pancreatic cancer cells (Figure 2). However, under
glutamine-depleted conditions, AGC1 may play a key role in this transport owing to its
low Km values (Figure 2).

5. UCP2: A Mitochondrial Aspartate Transporter

UCP2 is the most commonly investigated mitochondrial carrier in cancer and specifi-
cally in PDAC [88–91]. This transporter is a member of a subfamily of the SLC25 mitochon-
drial family known as uncoupling proteins and is thought to allow protons to enter the
mitochondrial matrix, thereby dissipating the proton gradient generated by the activity of
the respiratory electron transport chain, thus uncoupling respiration from ADP phosphory-
lation [92]. To date, six human isoforms (UCP1–6) encoded by six different genes have been
identified, namely SLC25A7-9, SLC25A27, SLC25A14, and SLC25A30 [93]. All UCPs share
the amino acid sequences called “uncoupling protein signatures”, which are positioned
in the first, second, and fourth helices, as well as in the second matrix loop. The six UCPs
also share high homology in the purine nucleotide binding domain [94]. UCP1 was the
first member to be identified of the UCP subfamily [95]. All the others were subsequently
discovered based on their sequence homology with UCP1 [96]. The uncoupling capabilities
of UCP2–5 appear to be modest. Their mild mitochondrial uncoupling could prevent
excessive mitochondrial reactive oxygen species (ROS) production, thereby decreasing
cell oxidative damage [97], as recently demonstrated for UCP2 and UCP3 in stroke and
ischemia/reperfusion [98].

Human UCP2 is encoded by the SLC25A8 gene mapped to chromosome 11, and it has
9 exons and 8 introns [99]. It was first reported in 1997 by Fleury et al. [100] and described
as an uncoupling protein or UCP2 [100] because of its high identity (59% amino acids) with
UCP1. UCP2 is ubiquitously expressed in the liver, gallbladder, pancreas, spleen, gastroin-
testinal tract, adipose tissue, and immune cells [101,102]. As a result of this wide tissue
distribution, its thermogenic function in the adipose tissue was put into question. Indeed,
later studies involving animal models ruled out its function in non-shivering thermogene-
sis, they instead revealed a role for UCP2 as an antioxidant protein/modulator involved in
redox homeostasis [103]. UCP2 is tightly regulated at transcriptional, translational, and
post-translational level [104,105]. At the transcriptional level, UCP2 is negatively regulated
by the TGF-β signalling pathway via the tumour suppressor protein SMAD4 [106]. SMAD4
is inactivated in several types of cancers, particularly in more than 50% of PDAC leading to
an increased expression of UCP2 [107,108]. Glutamine, but not its downstream metabolites,
upregulates UCP2 translation. On the contrary, glutamine depletion results in a rapid
decline in UCP2 protein levels [109,110]. In this regard, UCP2 has a very short half-life
as it is rapidly targeted for proteasomal degradation [111]. UCP2 expression is regulated
by miRNAs that include miR-133a [112,113] and miR-15a [114], both considered as tu-
mour suppressor miRNAs downregulated in PDAC [115,116]. In addition, miRNA-214
upregulates UCP2 expression ameliorating the oxidative stress associated with diabetic
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nephropathy [117]. miRNA-214 is considered to be an oncomiRNA upregulated in cancers
such as PDAC [118]. Mechanistically, it has been reported that miR-2909 can upregulate
UCP2 expression by repressing the KLF4 gene, which is a tumour-suppressing gene down-
regulated in PDAC [119,120]. Moreover, UCP2 is negatively regulated post-translationally
by glutathionylation [121,122]. In this context, reduced ROS levels stimulate UCP2 glu-
tathionylation, and thus its inactivation. To counteract the increase in ROS levels, UCP2 is
deglutathionylated and the active form is released [123].

The first evidence for UCP2’s unknown role as an amino acid carrier was provided
by Vozza et al. [87]. UCP2, functionally reconstituted into liposomes, was able to trans-
port aspartate, malate, and oxaloacetate in exchange for phosphate plus a proton [87]. In
line with this function, UCP2 silencing in hepatocellular carcinoma (HepG2) increased
the mitochondrial membrane potential and the ATP/ADP ratio while it decreased lactate
production when cells were grown in the presence of glucose. Interestingly, the opposite
effect was observed in the presence of glutamine [87]. In the presence of both glutamine
and glucose, the mitochondrial level of TCA cycle intermediates (citrate, malate, fumarate,
2-oxoglutarate) was increased [87]. This is consistent with a cataplerotic function in which
UCP2 pumps TCA cycle intermediates to the cytosol, thereby disrupting the complete
oxidation of glucose by the TCA (due to oxaloacetate depletion), while rewiring metabolism
towards enhanced glutaminolysis. This cataplerotic function of UCP2 is of crucial impor-
tance in cancer metabolism because many cancers are known to rewire their metabolism
towards enhanced glutamine utilization or “glutamine addiction”. In line with this notion,
UCP2 overexpression has been reported in several cancers and is associated with chemore-
sistance [61,89,124–127]. Traditionally, the tumour-promoting effect of UCP2 has been
ascribed to a reduction in ROS levels in cancer cells, achieved by lowering the electrochemi-
cal gradient across the inner mitochondrial membrane due to its protonophoric activity.
However, this theory has been challenged by several authors who reported that UCP2 lacks
uncoupling activity [128,129]. In line with this conclusion, we have recently showed that in
KRAS-mutated PDAC cancer cell lines, UCP2 expression decreases ROS levels by exporting
aspartate out of mitochondria [32]. In comparison with non-silenced controls, the silencing
of UCP2 reduces glutaminolysis, lowers both the NADPH/NADP+ and the GSH/GSSG
ratios and increases the levels of ROS. In addition, UCP2 silencing significantly reduced
tumour size of KRAS-mutant PDAC xenografts [32]. Notably, the silencing of UCP2 re-
duces glutaminolysis in both KRAS-mutant and KRAS wild-type cells, but only reduces
the cell proliferation and tumour growth of KRAS-mutant cells [32]. This result suggests
that UCP2 plays a key role in glutaminolysis and that the increased levels of ROS observed
upon UCP2 silencing in KRAS-mutated PDAC cells are most likely produced by impaired
glutaminolysis rather than reduced UCP2-dependent uncoupling activity [32] (Figure 2).
Moreover, UCP2 expression does not appear to be regulated by mutated KRAS. In fact,
PDAC BxPC3 cells normally carrying the wild-type KRAS do not alter their UCP2 levels
when overexpressing the KRAS G12V mutant, but rather show increased proliferation and
colony formation capacity. On the other hand, these effects are significantly reduced by
UCP2 silencing, thus reinforcing the conclusion that UCP2-dependent aspartate transport
is critical to support the increase in cell proliferation induced by mutated KRAS [32].

It should be emphasized here that, in PDAC, mutated KRAS induces rewiring of the
pentose phosphate pathway by uncoupling oxidative from non-oxidative reactions and
limits it to the mere production of ribose-5-phosphate for nucleotide synthesis [19,130]. In
order to fulfil the increased demand for NADPH, KRAS also rewires glutamine metabolism
by raising the expression of both glutaminase and GOT2. These enzymes metabolize
glutamine into α-KG and aspartate: the former is expended through the TCA cycle for
energy production, and the latter is transported out of mitochondria into the cytosol, where
it is used for the synthesis of proteins and nucleotides and/or is converted by GOT1 into
oxaloacetate and malate. Finally, malate is converted to pyruvate by the malic enzyme,
a reaction accompanied by NADPH production [28,131,132] (Figure 2). It should also be
stressed again that UCP2 has a high Km value for aspartate (6.8 mM), suggesting that UCP2
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might be involved in aspartate transport only under conditions of active glutaminolysis,
such as in PDAC [87]. In this context, the mitochondrial glutamine carrier (i.e., SLC1A5_Var)
could transport glutamine to the matrix, then the glutamine-derived aspartate is trans-
ported out through UCP2 (Figure 2). This metabolic model is supported by the fact that the
silencing SLC1A5_Var or UCP2 was shown to cause reduced PDAC cell growth [32,51] and
this effect was rescued by aspartate or glutamate and in the presence of glutamine, both
transporters are critical to fulfil the cytosolic need for aspartate [32,51]. Conversely, when
glutaminolysis is impaired or glutamine is limited, glutamate can enter the matrix likely
through AGC and produces the aspartate that is able to exit via the same transporter.

Most of the published data on the role of UCP2 in PDAC have been obtained using
established cancer cell lines and animal models, which means that researchers have only
investigated the role of UCP2 in PDAC maintenance and progression, whereas the role
of UCP2 on PDAC initiation remains largely unexplored. Recently, a study published by
Aguilar et al. demonstrated that UCP2 was overexpressed only on established murine
colorectal tumours and human patients compared to their normal counterpart tissues.
Interestingly, knocking out UCP2 enhances tumourigenesis of the colon and small intestine
in a carcinogen-induced and Apc-/- mouse model, respectively. These data suggest that
UCP2 might act as a tumour suppressor during initiation [133]. In this regard, the study
showed that UCP2 deletion induced a metabolic reprogramming in which glucose-derived
pyruvate was directed to fatty acid synthesis by increasing the synthesis of citrate, a
metabolic change that requires high amounts of NADPH [133]. In parallel, UCP2-KO CRC
cells showed a decrease in glucose-6-dehydrogenase activity, and thus in the GSH/GSSG
ratio, as well as increased ROS levels [133]. It was speculated that the oxidative stress
generated in this context could cause genomic instability and hence tumour initiation [133].
This hypothesis is also consistent with the finding that UCP2 deletion suppressed C4
metabolites efflux from the mitochondrial matrix, thereby promoting the synthesis of
citrate from acetyl-CoA and oxaloacetate. Similar results were also reported using HepG2
cells, neonatal rat ventricular myocytes, and human pluripotent stem cells [87,134,135].

In summary, evidence from the literature suggests that UCP2 may act as a tumour
suppressor during tumour initiation while it can have the opposite role as tumour promoter
during progression, though exerting the same biochemical function at both stages [136,137].

6. The Mitochondrial Pyruvate Carrier

Normally, glucose is utilized by mammalian cells as the main energy source where it is
first metabolized through a ten-reaction pathway, glycolysis, which results in two molecules
of pyruvate and the net energy of 2 ATP molecules [138]. Next, pyruvate is transported to
the mitochondria to be further metabolized through the TCA cycle generating the remaining
ATP molecules. For this reason, pyruvate is at the crossroad between glycolysis and
mitochondrial oxidative phosphorylation [139]. Pyruvate, like many cytosolic metabolites,
cannot bypass the inner mitochondrial membrane. The existence of a specific mitochondrial
pyruvate carrier was hypothesized in the 1970s. However, the molecular identity of the
molecular complex acting as pyruvate carrier was independently elucidated by two research
groups only in 2012 [52,53].

The mitochondrial pyruvate carrier (MPC) is highly conserved throughout evolution
from yeast to humans [140]. In humans, there are two genes encoding for MPC. MPC1 is
encoded by the MPC1 gene (also known as Brp44L) that maps to chromosome 6 and it has
a transcript made of 8 exons and 7 introns giving rise to a 109 amino acid-long protein.
MPC2 is encoded by the MPC2 gene (also known as Brp44) mapped to chromosome 1 and
it has five exons and four introns producing a 127 amino acid-long protein [52,53].

Unlike other known canonical mitochondrial carriers such as SLC25, MPC belongs to
a new class of mitochondrial carriers, SLC54 [62]. Although the molecular weight of MPC1
and MPC2 is 12 and 15 KDa, respectively, the whole MPC complex has a molecular weight
of 150 KDa, suggesting that MPC1 and MPC2 form hetero-oligomers with 1:1 ratio. The loss
of either one of the two results in a carrier unable to uptake pyruvate [141]. Interestingly, it
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has recently been suggested that MCP2 could be able to function as an independent carrier
of pyruvate [142].

Cancer cells dramatically reprogram glucose metabolism through increased glucose
flux via the glycolytic pathway and lactate efflux to the extracellular microenvironment,
as well as decreased pyruvate influx to mitochondrial oxidative phosphorylation even
in the presence of oxygen and functional mitochondria [17,143]. The latter is achieved
by (i) decreased pyruvate synthesis by downregulating the expression of the most active
form of pyruvate kinase, which catalyzes the conversion of phosphoenolpyruvate (PEP) to
pyruvate (for review, see [144,145]); (ii) downregulation of the MCP complex, particularly
MPC1 [146,147]; and iii) inhibition of the pyruvate dehydrogenase complex (PDH) by in-
creasing the expression of pyruvate dehydrogenase kinase, which phosphorylates PDH and
reduces its activity (for review see [148,149]). Under this condition of decreased pyruvate
utilization and accumulation of its precursors (glycolytic intermediates), cancer cells switch
their glycolytic metabolism to three main biosynthetic pathways: (i) the pentose phosphate
pathway in order to synthesize ribose-5-phosphate for nucleotides synthesis; (ii) the ser-
ine synthesis pathway to be used in one-carbon metabolism and involved in nucleotide
synthesis; and (iii) the hexosamine pathway in order to synthesize amino sugars for the
biosynthesis of glycoproteins and glycoconjugates [150]. Therefore, the MCP complex plays
a key role in glucose metabolic rewiring and cancer pathogenesis. As recognized soon
after its discovery, the MPC complex, and MPC1 in particular, is downregulated in many
cancers [149,151–154]. In PDAC, evidence of the MPC complex downregulation is scarce
and consists of only two reports published to date. Cui and colleagues noted a significant
reduction in MPC1 expression (both at the mRNA and protein levels) in PDAC cell lines
and tumour tissues compared to adjacent non-tumour controls. This was associated with
poorer differentiation, lymph node metastasis, higher TNM (tumour (T), nodes (N), and
metastases (M)) stages, and patients’ overall survival [155]. Moreover, MPC1 downregu-
lation was accompanied by a decrease in mitochondrial pyruvate and an increase in cell
growth, invasion, migration, tumourigenicity, and lactate production (Figure 2). These
effects were reversed by MPC1 overexpression [155]. Mechanistically, the reduction in
MPC1 expression appears to be mediated by the lysine demethylase 5A (KDM5A) that
binds to the MPC1 promoter and demethylates H3K4 thereby suppressing MPC1 expres-
sion. Evidence supporting this mechanism is provided by experiments knocking down
KDM5A that causes an increase in MPC1 expression and reverses all parameters associated
with its downregulation and by the fact that when KDM5A is overexpressed in PDAC, it
promotes cell proliferation in vitro and tumour growth in vivo by suppressing MPC1 ex-
pression. These data suggest that the KDM5A/MPC-1 signalling pathway increases PDAC
growth, invasion, and migration by decreasing pyruvate metabolism, thus highlighting it
as a hotspot for targeted drug development [155]. Indeed, KDM5A has been extensively
investigated as a drug target for cancer therapy (see review [156]). Another report showed
that MPC1 is downregulated in pancreatic cancer cells, and further knockdown of MPC1
resulted in a spindle-like shape, in expression changes of epithelial–mesenchymal transition
(EMT) markers such as E-cadherin and fibronectin, as well as in the acquisition of a mi-
gratory phenotype. These alterations were accompanied by an increase in GLS expression
and significantly increased resistance to radiotherapy. Unfortunately, this study did not
investigate the mechanism linking MCP1 downregulation and/or GLS overexpression to
EMT [157].

7. Conclusions and Perspectives

PDAC is characterized by extensive metabolic rewiring including enhanced aerobic
glycolysis and glutaminolysis or glutamine addiction. In this context, glucose is metabo-
lized through aerobic glycolysis for rapid energy production and to provide the building
blocks for biosynthetic pathways including the pentose phosphate pathway, hexosamine
pathway, and serine biosynthesis (Figure 1). On the other hand, glutamine is directly used
to synthesize nucleotides, hexosamines, and proteins, as well as to produce energy through
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the TCA cycle (Figure 1). Additionally, glutamine can be converted into metabolites such
as aspartate, which in turn is involved in the biosynthesis of nucleotides and asparagine,
incorporated into proteins, and provides NADPH redox equivalents for maintaining redox
balance (Figure 1). In order to produce aspartate, glutamine must be transported to the
mitochondrial matrix, where it is converted into aspartate and α-KG by GLS and GOT2,
two key enzymes of glutaminolysis.

To favour metabolic rewiring, PDAC cells change the transport of metabolites through
the inner mitochondrial membrane towards the matrix by decreasing the flux of pyruvate,
increasing that of glutamine and glutamate, while increasing the efflux of aspartate. Hence,
the mitochondrial solute transporters MPC, SLC1A5_var, SLC25A12, SLC25A22, and UCP2
play a central role in these metabolic reprogramming scenarios (Figure 2). Data obtained in
experimental settings with the gain and loss of function of these transporters have suggested
that they have a main role in PDAC progression and maintenance [32,51,67,155]. However,
the current literature suggests that there might be additional mitochondrial transporters
involved in PDAC progression such as SLC25A44 (mitochondrial branched-chain amino
acids (BCAA) transporter) [158] and SLC25A1 (mitochondrial citrate transporter), both of
which should be further investigated [159–161]. Indeed, a study by Lee et al. demonstrated
that PDAC cells increase the uptake of BCAAs that are further metabolized in the matrix
by branched-chain amino acid transaminase 2 (BCAT2; the mitochondrial isoform) and
BCKDH, thus resulting in enhanced fatty acid synthesis [26]. According to this scenario, it
is reasonable to hypothesize that the expression of the mitochondrial BCAA transporter
and of the mitochondrial citrate carrier would also increase the flux of BCAAs and efflux of
citrate to the cytosol where fatty acid biosynthesis takes place.

From a patient treatment perspective, PDAC metabolic rewiring offers new attractive
therapeutic targets. To date, most efforts have been put into the design and development
of potent inhibitors of glucose and glutamine metabolism, such as those targeting glu-
taminase (CB-839) and hexokinase (Benitrobenrazide), for example. On the other hand,
studies aimed at the treatment of PDAC targeting the mitochondrial carriers are very
limited, likely because of the very recent discovery of their role in the pathogenesis of the
disease and the challenges and limitations intrinsic to in vitro inhibition assays. However,
preliminary evidence shows that targeting mitochondrial carries with small molecules,
particularly those of natural origin, could provide powerful tools to fight PDAC [162].
For instance, the UCP2 inhibitor genipin (chemical compound extracted from the Genipa
americana fruit) has shown promising effects against PDAC cell lines by inducing GAPDH
nuclear translocation and autophagy [163], increasing ROS productions and gemcitabine
sensitization [125], and reducing the expression of hnRNPA2/B1, a key regulator of GLUT1,
PKM2 mRNAs, and lactate dehydrogenase (LDH), thereby sensitizing PDAC cell lines to
glycolysis inhibition by 2-deoxy-D-glucose [164]. Therefore, the identification of additional
natural compounds targeting mitochondrial carriers should be further explored. However,
small molecule-based therapy is associated with a number of pitfalls including, but not
limited to, the cost and time of the screening of libraries to find effective lead molecules,
the potential off-targets, the toxicities and the side effects that may arise during preclinical
and clinical trials, and the insurgence of drug resistance [165]. Finally, the use of miRNAs
that specifically target the transcript of the molecule of interest by inhibiting its translation
or inducing its degradation could represent a valid alternative strategy to overcome the
challenges associated with small molecules. In this regard, the expression of UCP2 can be
downregulated by miR-15a and miR-133a, two miRNAs known to be downregulated in
PDAC [166,167]. Further studies are needed to explore the effects of such miRNAs on their
targets and other transporters.
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