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Abstract: Dyslipidemia is a lipid metabolism disorder associated with the loss of the physiological
homeostasis that ensures safe levels of lipids in the organism. This metabolic disorder can trigger
pathological conditions such as atherosclerosis and cardiovascular diseases. In this regard, statins
currently represent the main pharmacological therapy, but their contraindications and side effects
limit their use. This is stimulating the search for new therapeutic strategies. In this work, we
investigated in HepG2 cells the hypolipidemic potential of a picrocrocin-enriched fraction, analyzed
by high-resolution 1H NMR and obtained from a saffron extract, the stigmas of Crocus sativus L., a
precious spice that has already displayed interesting biological properties. Spectrophotometric assays,
as well as expression level of the main enzymes involved in lipid metabolism, have highlighted
the interesting hypolipidemic effects of this natural compound; they seem to be exerted through
a non-statin-like mechanism. Overall, this work provides new insights into the metabolic effects
of picrocrocin, thus confirming the biological potential of saffron and paving the way for in vivo
studies that could validate this spice or its phytocomplexes as useful adjuvants in balancing blood
lipid homeostasis.

Keywords: picrocrocin; saffron extract; low-density lipoprotein receptor (LDLR); lipid metabolism;
hypolipidemic activity; HepG2 cells

1. Introduction

Dyslipidemia is a lipid metabolism disorder depending on multiple factors, such
as genetic predisposition, metabolic capacity, and dietary intake [1]. Dyslipidemia is
characterized by the presence of one or more of the following phenotypes: elevated serum
concentrations of low-density lipoproteins (LDL), triglycerides (TG) and total cholesterol,
or low concentrations of high-density lipoproteins (HDL). The main manifestation of
dyslipidemia is atherosclerosis, which can lead to cardiovascular diseases, which are
leading causes of death in industrialized countries. These pathologies include coronary
heart diseases (angina pectoris and heart attack), cerebrovascular (stroke) and peripheral
vascular diseases [2]. Atherosclerosis is a degenerative pathological condition affecting
medium and large caliber arteries and causing an accumulation of fat and white blood
cells in the inner wall of the blood vessels, in which atherosclerotic plaques are formed [3].
The most predisposed subjects are those with one or more risk factors, such as diabetes,
hyperlipidemia, hypertension and obesity; in addition, smoking, alcohol, sedentary life,
incorrect diet, age and gender can contribute to the onset of these diseases.
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The therapeutic approach to treating different metabolic diseases such as cancer,
inflammation and dyslipidemia primarily involves changes in lifestyle and diet [4–9]; if
this is not enough, the use of drugs is recommended. One of the main pharmacological
strategies used in clinical practice is to target β-hydroxy-β-methylglutaryl-CoA reductase
(HMGR), an enzyme that plays a crucial role in cholesterol biosynthesis regulation [10].
Statins are hypocholesterolemic drugs acting as competitive inhibitors of HMGR, thus
lowering LDL levels. Although statins are able to reduce cardiovascular risk in the range of
15 to 37%, a substantial residual risk remains due to insufficient LDL lowering, high TG and
low HDL levels [11–14]. Furthermore, statin administration is not always possible; indeed,
more than 40% of patients experience important side effects that make this therapeutic
approach unsuitable [15–17]. These side effects include altered liver function, muscle
pain and gastrointestinal disorders; moreover, statin administration should be avoided in
alcoholics, pregnant and breastfeeding women, as well as in children and patients with liver
dysfunction. Furthermore, these drugs should not be combined with fibrates [13,14], as
they can lead to myopathy, rhabdomyolysis and renal failure. Their administration is also
not recommended in patients with type 2 diabetes mellitus and metabolic syndrome [18],
as although they promote a significant reduction in LDL levels, they are not effective in
reducing the onset of cardiovascular diseases. In this regard, it has been observed that
over 50–60% of patients treated with statins experience cardiovascular pathologies within
5 years of treatment [19].

Due to the different contraindications and side effects of statins, research is now very
active in identifying new molecules that are endowed with reduced toxicity and are more
accessible to patients regardless of their risk factors. In this regard, research attention has
shifted towards plant extracts and natural products, to which are attributed the ability
to modulate lipid metabolism, and which are usually well tolerated, having low or no
toxicity [7,20].

Saffron is a precious spice obtained from the stigmas of Crocus sativus L., a plant
belonging to the Iridaceae family and which mainly grows in Asian countries, in particular
in Iran, Iraq and India, as well as in some Mediterranean countries such as Greece, Spain and
Morocco [21]. This spice is characterized by the presence of three main metabolites: crocin,
responsible for the yellow color of the stigmas; picrocrocin, which determines the bitter taste
of saffron; and safranal, a volatile terpene aldehyde responsible for the characteristic smell
and aroma of this spice. Crocin and picrocrocin are the major compounds found in saffron,
and picrocrocin represents the biosynthetic precursor of safranal. Other natural compounds
found in saffron are anthocyanins, flavonoids, vitamins (riboflavin and thiamine), amino
acids, proteins, starch and minerals [22]. Saffron has several biological properties and
is considered a potential therapeutic drug. For this reason, it is widely used as an anti-
catarrhal, anti-spasmodic, nerve sedative, diaphoretic, carminative and expectorant [23].
The antioxidant effects of saffron are attributed to the presence of crocin and safranal, which
exhibit significant radical scavenging activity [24–27]. Starting from its antioxidant action,
other effects have emerged, such as anti-cancer, anti-toxic [28–30], anti-nociceptive [31,32]
and anti-inflammatory ones [32–34]. Saffron promotes a decrease in blood glucose levels
and an increase in insulin secretion by pancreatic β-cells; therefore, it appears to be endowed
with anti-diabetic and hypoglycemic effects [35–37]. In addition, crocin and safranal are
believed to exert antidepressant effects [38,39], since crocin may inhibit dopamine and
norepinephrine uptake, while safranal can affect the serotonergic system.

Furthermore, recent studies have highlighted the hypolipidemic [40] and anti-
atherosclerotic [41,42] activity of crocin. In detail, it is able to selectively inhibit pancreatic
lipase, acting as a competitive inhibitor. This leads to a reduction in the absorption of
fats and cholesterol, thus lowering blood levels of TG, total cholesterol, LDL and very
low-density lipoproteins (VLDL).

Since there are currently no studies on the effects of picrocrocin on lipid metabolism,
in this work, we aimed to investigate the activity of a picrocrocin-enriched fraction (PEF)
from saffron, without resorting to chemical-physical manipulations, in order to evaluate
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the potential additional hypolipidemic effect that this natural product can exert in saffron
phytocomplexes. In order to evaluate and characterize the biological activity of this natural
compound, the effects of PEF were studied in the HepG2 cell line, i.e., hepatocytes widely
used as an in vitro model for the study of cell metabolism.

2. Results and Discussion

2.1. High-Resolution 1H NMR Spectrum of PEF

In order to prepare this type of extract, a well-known, rapid and straightforward extrac-
tion methodology was applied to the commercially available matrix, which is also useful in
the case of other different complex plant matrices [43–45]. The high-resolution 1H NMR
spectrum of PEF was characterized by a high complexity. A series of well-distinguishable
resonance signals were detectable; however, many signals strongly overlapped or appeared
as shoulders of the most intense peak, centered at 3.41 ppm, which was generated by the
methyl protons of methanol used for separation. The peak at 2.51 ppm was generated
by the residual resonance of unlabeled DMSO-d6, which was employed to calibrate the
spectrum. The latter could be divided into four regions, each one containing signals which
could be referenced to the different chemical components of the extract. The first region
between 0.50 and 2.70 ppm displayed signals attributable to fatty acid chains (0.86, 1.46,
1.74 ppm), and a pair of singlets attributable to the protons of 7 and 8 methyl groups in
the structure of picrocrocin, at 1.16 and 1.19 ppm, respectively. The singlet that partially
overlapped at 1.98 ppm was attributed to the methyl group at the 9 position of picro-
crocin, while the series of the clearly visible multiplets between 1.50 and 1.80 and 2.10
and 2.60 ppm confirmed the resonances of the 5-CH2 and 3-CH2 protons, respectively, in
the picrocrocin structure. The singlet at 2.10 was due to the presence of acetic acid in the
sample. A second spectral region between 2.80 and 5.50 ppm displayed a series of peaks
that strongly overlap. This was the spectral window, containing all signals mainly due to
the resonances of OH functions and CH protons of the β-glucose residue of picrocrocin.
The multiplet at 4.01 ppm was the signal correlated to the resonance of 4-CH in picrocrocin.
The primary OH of β-glucose was very well-detectable as a triplet centered at 4.20 ppm.
The partially overlapped peak at 5.19 ppm was attributed to the 5′ anomeric CH of the
β-glucose ring. The absence of safranal, the unsaturated aglycone of picrocrocin, was
reportedly undetectable, at least under the limits imposed by the spectral technique. In fact,
the narrow chemical shift interval between 5.50 and 6.30 did not feature signals attributable
to the protons of the endocyclic double bond. Traces of crocins could not be excluded on the
basis of the signals characterizing the fourth spectral window between 6.35 and 7.55 ppm,
and were attributable to the protons of the conjugated olefinic chains typically featured in
crocins. The intense and well defined singlet at 10.05 ppm proved a likely high amount of
picrocrocin in the sample under investigation (Figure 1).

Detection and signal attributions were supported by the literature [46,47] in order to
confirm the structures of picrocrocin, safranal, and the other principal methanol soluble
saffron metabolites.

The obtained extract showed a quali/quantitative NMR profile (with the relative
quantification based on the value of the intensities of the resonance peaks selected for the
attribution of the known structures of the compounds of interest), of which the plot contour
and values of the signal integrals are close to that illustrated in previous works [43–45],
thus indicating a picrocrocin content of no less than 90%.

2.2. Picrocrocin Inhibits the Activity of the Purified Human Catalytic Fragment (cf-HMGR)

Since HMGR is a key enzyme in the regulation of lipid metabolism, and considering
that it currently represents the main pharmacological target for the treatment of hyperc-
holesterolaemia and hyperlipidaemia, we decided to evaluate the ability of picrocrocin to
inhibit HMGR activity. In particular, the inhibitory potential of PEF was assessed on the pu-
rified human catalytic fragment (cf-HMGR), which was validated as a useful tool for rapid
screening of the cholesterol-lowering potential of drug candidates in our previous stud-
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ies [48]. The results of our spectrophotometric assay showed a statistically significant, albeit
modest, inhibitory activity elicited by the PEF from our saffron extract (Figure 2), which
was capable of determining 50% inhibition when used at a concentration of 300 µg/mL.
The pravastatin concentration used as a control for the cf-HMGR activity assay was chosen
based on our previous work [48].
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Figure 2. Picrocrocin inhibits the activity of the purified HMGR catalytic subunit. Results are
expressed as percentage of enzymatic activity versus control (enzymatic assay without inhibitors);
pravastatin was used as a positive control. Values represent mean ± SD of three independent
experiments. * p value < 0.05; ** p value < 0.01; ns: non-significant.
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The validity of the test was confirmed using pravastatin, a known HMGR inhibitor
able to reduce enzyme activity in a dose-dependent manner, as a control, halving it when
used at a concentration of 100 nM. Based on the modest inhibitory activity found for PEF,
and in order to better characterize the pharmacological potential of this natural product,
we decided to investigate its effects on lipid metabolism in a more complex model.

2.3. Picrocrocin Affects Lipid Homeostasis in HepG2 Cells with a Non-Statin-like Mode of Action

Given the results obtained on the purified cf-HMGR enzyme, we decided to evaluate
the effects of PEF from our saffron extract on the lipid metabolism of the HepG2 cell line, an
in vitro model of hepatocytes widely validated for preclinical studies on cell metabolism.
Firstly, a viability test was performed to reveal any toxic effects of the extract on this cell line.
As shown in Figure 3A, the obtained results showed that no cytotoxic effect was induced
by the treatment of HepG2 cells for 72 h with PEF, up to a concentration of 300 µg/mL.
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treatment for 72 h, with increasing concentrations (1 to 300 µg/mL) of PEF from saffron extract.
(B) qPCR analysis of SREBP1 and SREBP2 transcription levels after treatment for 24 h. The relative
expression of human SREBP1 and SREBP2 were determined by Sybr green qPCR. The ∆Ct of human
PPIA was used as an internal calibrator. These results highlight PEF’s ability to increase mRNA levels
of SREBP1 and SREBP2 in HepG2 cells without affecting cell viability. Values represent mean ± SD
of three independent experiments. ** p value < 0.01; **** p value < 0.0001; ns: non-significant.

The ability of PEF to regulate cellular lipid homeostasis was initially evaluated by
monitoring transcription levels of the main proteins implicated in the regulation of lipid
metabolism, i.e., SREBP1 and SREBP2, which are involved in the regulation of the biosyn-
thesis of triglycerides [49–51] and cholesterol [52,53], respectively. HepG2 cells were treated
with increasing concentrations of PEF, ranging from 1 to 300 µg/mL. As shown in Figure 3B,
our qPCR analysis after 24 h of treatment revealed the ability of PEF to significantly in-
crease SREBP1 and SREBP2 transcription levels at the highest concentration tested. This
experiment allowed us to choose the optimal treatment condition for further investigations.

Based on these preliminary results, we treated cells using 300 µg/mL PEF, and moni-
tored over time the transcription levels of fatty acid synthase (FASN) and glycerol phosphate
acyltransferase (GPAT), both of which are regulated by SREBP1, as well as those of HMGR
and LDL receptor (LDLR), both of which are regulated by SREBP2. For HepG2 treatment,
pravastatin was used as a control, and its concentration was chosen based on previous
works [54–56]. The obtained results (shown in Figure 4A) revealed an unexpected regu-
lation of the expression of these genes. After 24 h of treatment, the increase in SREBP2
expression levels was associated, as expected [53], with a marked increase in LDLR tran-
scription levels, whereas surprisingly, a significant reduction in HMGR mRNA levels was
observed. A similar occurrence was observed for the expression of the genes regulated by
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SREBP1. In particular, the increase in SREBP1 mRNA levels was found not to be associated
with an increase in the transcription levels of the GPAT and FASN genes.
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Figure 4. Effects of picrocrocin on the transcription of genes related to lipid metabolism. (A) qPCR
analysis of the mRNA levels for the main proteins involved in lipid homeostasis after treatment of
HepG2 for 24 and 48 h with PEF from our saffron extract (300 µg/mL). (B) qPCR analysis of mRNA
levels after treatment of HepG2 cells for 24 and 48 h with pravastatin (5 µM). These results highlight
PEF’s ability to modulate the mRNA levels of proteins involved in lipogenesis with a method
different from that of pravastatin. Values represent mean ± SD of three independent experiments.
* p value < 0.05; ** p value < 0.01; *** p value < 0.001; ns: non-significant.

Prolonging the treatment for 48 h, a reduction in SREBP1 and SREBP2 transcription
levels was observed, together with a decrease in the transcript levels of their target genes.

Overall, these results show an intense regulation of lipid metabolism by PEF, but with
molecular mechanisms that are very different from those used by HMGR inhibitors such as
statins. Picrocrocin seems to reduce the synthesis of TG and cholesterol in a time-dependent
manner, and this effect is associated with an increase in the LDLR expression level, which is
responsible for the re-uptake of LDL in the liver under physiological conditions. Conversely,
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pravastatin inhibits HMGR activity, but is also able to induce an increase in the expression
level of the enzyme itself (Figure 4B) through a negative feedback mechanism. This event
is experimentally associated with an increase in the expression levels of the enzymes
responsible for fatty acids and triglyceride synthesis [57,58].

The immunoblotting analysis of the aforementioned proteins was carried out in order
to better understand the regulation of lipid metabolism induced by picrocrocin from our
saffron extract. From the obtained results (shown in Figure 5) it can be seen that, although
at 24 h, an increase in SREBP1 expression levels is evident, in our experimental conditions,
this protein does not undergo proteolytic activation and therefore remains in an inactive
form [59]. This phenomenon allows us to clarify the lack of correlation between increased
transcript levels of SREBP1 and those of its target genes. Conversely, the increase in SREBP2
expression corresponds to an increase in its cleaved and active form, which is responsible
for the increase in the LDLR expression level. In particular, after 24 h of incubation, qPCR
analysis detected an increase, followed by a dramatic decrease (after 48 h of incubation) in
SREBP2 expression (Figure 4A). Consolidated literature data highlighted that the SREBP-2
protein exerts sterol regulation through cleavage of the membrane-bound precursor protein
to release the active form into the nucleus [59]. In this regard, unlike Western blot analysis,
qPCR analysis cannot discriminate between the SREBP2 precursor and its cleaved mature
form. Based on the qPCR data, the related immunoblot highlighted a marked band due to
proteolytic activation of the SREBP-2 precursor (24 h) that dramatically decreased at 48 h
(Figure 5A); therefore, the observed increase in the SREBP2 mRNA level (24 h) followed by
its decrease (48 h) could be explained by the level of the SREBP-2 protein mature form.
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Figure 5. Effects of picrocrocin on protein expression of enzymes related to lipid metabolism. (A) Im-
munoblot analysis of the main proteins involved in lipid homeostasis after treatment of HepG2 cells
for 24 and 48 h with PEF from our saffron extract. (B) Quantification of protein expression levels
by densitometry. Values represent mean ± SD of three independent experiments. * p value < 0.05;
*** p value < 0.001; **** p value < 0.0001; ns: non-significant; nd: not detectable.
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3. Materials and Methods
3.1. Chemicals

Solvents (CH3CN, and H2O, HPLC grade) were purchased from Sigma-Aldrich Fluka
(Milan, Italy). Samples of saffron spice were directly obtained from producers, with a
guarantee of their origin and freedom from fraud. Dried Crocus sativus L. stigmas were
obtained from the Cooperative of Saffron (Krokos Kozanis, Greece).

3.2. NMR Spectroscopy. Experimental Details

The extract was prepared using a well-known extraction methodology applied to the
commercially available matrix, which is widely accepted by the scientific community and
is useful for other different complex plant matrices [43–45].

Three replicates of PEF were prepared for high-resolution 1H NMR analysis. Spectra
were recorded in hexadeutero dimethyl sulfoxide (DMSO-d6; 600 µL for sample) purchased
from Sigma-Aldrich (Milan, Italy) at 298 K, on a Bruker Avance Ultrashielded 300 MHz
spectrometer equipped with a 5 mm multinuclear Z-axis gradient inverse probe head and
at a proton frequency of 300.08 MHz. Relaxation times T1, pulse sequences, and acquisition
and elaboration parameters were applied according to the literature [60–62].

3.3. Sample Preparation

A portion (2 g) of Crocus sativus L. stigmas was extracted, adopting the procedure
already reported [63,64]. The enriched fraction was obtained by solid phase extraction (C18,
55 um, 70 A, Phenomenex, Torrance, CA, USA) as previously reported [65]. The fraction
was freeze-dried in a vacuum centrifuge (Speed-Vac, Cryo Rivoire, Montpellier, France)
and kept at 20 ◦C until its utilization.

3.4. Enzymatic Activity of the Purified Human Catalytic Fragment (cf-HMGR)

The enzymatic activity of cf-HMGR was spectrophotometrically determined as pre-
viously described [48]. Briefly, 0.85 µg of purified protein was added to assay buffer to
reach a final volume of 100 µL, and this complete assay mixture (also containing 0.2 mM
NADPH) was incubated at 37 ◦C. The reaction was started by adding 0.1 mM HMG-CoA
to the complete assay mixture. The substrate-dependent oxidation of NADPH was mea-
sured at 340 nm using a UV spectrophotometer (Applied Biosystems model Jenway 7315,
Thermo Fisher Scientific, Milan, Italy) equipped with a peltier unit. The rate of NADPH
oxidation in the absence of HMG-CoA (control reaction) was subtracted from that obtained
in the presence of HMG-CoA. NADPH oxidation was monitored every second for 10 min.
Inhibition assays were performed by incubating the enzyme with different concentrations
of picrocrocin from saffron extract (100–300 µg/mL) or pravastatin (100–300 nM).

3.5. Cell Cultures

The HepG2 cell line was purchased from the American Type Culture Collection
(ATCC: Rockville, MD, USA) and cultured for maintenance purpose in DMEM-High
Glucose (Sigma, St. Louis, MO, USA) and supplemented with 10% fetal bovine serum (FBS,
Sigma), 1% penicillin/streptomycin (Sigma) and 2 mM L-glutamine (Sigma). Treatments
were performed in the aforementioned medium without supplemented serum. Cells were
cultured at 37 ◦C in 5% CO2 in a humidified atmosphere.

3.6. Cell Viability Assay

Cell viability was determined as previously described [66,67] using a 3-(4,5-Dimethyl-
2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay. Briefly, cells were seeded
in 48-well plates with a density of 2 × 104 cells/well, and cultured in complete medium
overnight. Cells were then treated with different concentrations of compounds for 24, 48
and 72 h. After treatment, MTT solution was added to each well (to a final concentration of
0.5 mg/mL) and plates were incubated at 37 ◦C for 2 h until the formation of formazan crys-



Int. J. Mol. Sci. 2023, 24, 3060 9 of 14

tals. DMSO-solubilized formazan in each well was quantified by reading the absorbance at
570 nm using a microplate reader.

3.7. Quantitative PCR with Reverse Transcription (qRT–PCR)

Cells were grown in 10 cm dishes to reach 70–80% confluence, and exposed for 24/48 h
to the vehicle (DMSO) or picrocrocin (from 1 to 300 µg/mL). Total cellular RNA was ex-
tracted using TRIZOL reagent (Invitrogen), as suggested by the manufacturer. RNA purity
and integrity were assayed spectroscopically as well as by gel electrophoresis before analy-
sis was performed. Complementary DNA (cDNA) was synthesized by reverse transcription,
as already described [68]. For quantitative PCR (qPCR), primers based on the cDNA se-
quences of investigated genes were designed with Primer Express 3.0 (Applied Biosystems,
Life Technologies, Carlsbad, CA, USA) and purchased from Invitrogen (Life Technologies)
(Table 1). The qPCR reactions were performed using a Quant Studio7 Flex Real-Time
PCR System (Life Technologies). An aliquot of 10 µL of reaction volume contained 25
ng of template (reverse transcribed first-strand cDNA), 5 µL SYBR Green Universal PCR
Master Mix (BioRad, Hercules, CA, USA), and 300 nM of each specific primer [69,70].
The specificity of the PCR amplification was tested with the heat dissociation protocol
following the final cycle of PCR. Each experiment was repeated at least 3 times [71,72]. The
comparative threshold cycle method was used in relative gene quantification, as previously
described [73,74], using Peptidylprolyl isomerase A (PPIA).

Table 1. qPCR primers sequences.

Primer Name Sequence (5′-3′)

SREBP1-Fw GCGGAGCCATGGATTGCAC

SREBP1-Rv TCTTCCTTGATACCAGGCCC

SREBP2-Fw TGGCTTCTCTCCCTACTCCA

SREBP2-Rv GCAGCTGCAAAATCTCCTCT

FASN-Fw AGCTGCCAGAGTCGGAGAAC

FASN-Rv TGTAGCCCACGAGTGTCTCG

GPAT1-Fw GGCATCCTGAACTGGTGTGTG

GPAT1-Rv GAGCTTGAGGAAGAGGATGGTG

HMGR-Fw AGGTTCCAATGGCAACAACAGAAG

HMGR-Rv ATGCTCCTTGAACACCTAGCATCT

LDLR-Fw CAATGTCTCACCAAGCTCTG

LDLR-Rv TCTGTCTCGAGGGGTAGCTG

PPIA-Fw CATACGGGTCCTGGCATCTT

PPIA-Rv TCCATGGCCTCCACAATATTC

3.8. Immunoblotting Analysis

For immunoblotting analysis of the different proteins assessed in this study, cells were
grown to 70–80% confluence and subjected to treatment. For total lysates’ preparation, cells
were harvested and lysed in 200 µL of lysis buffer (50 mM Tris–HCl, 150 mM NaCl, 1% NP-
40, 0.5% sodium deoxycholate, 2 mM sodium fluoride, 2 mM EDTA, 0.1% SDS) containing
a mixture of protease inhibitors (aprotinin, phenylmethylsulfonyl fluoride, and sodium
orthovanadate; Sigma). The same amounts of proteins from the total lysate or cytosolic
fraction were resolved on SDS-polyacrylamide gel, transferred to a nitrocellulose membrane
and probed with appropriate primary antibodies (Anti-SREBP1, Anti-SREBP2, Anti-GPAT,
Anti-FASN, Anti-HMGR, Anti-LDLR, Santa Cruz Biotechnology, Santa Cruz, CA, USA and
Merck KGaA, Darmstadt, Germany). To confirm equal loading and transfer, membranes
were stripped and incubated with anti-GAPDH antibody [75] (Santa Cruz Biotechnology).
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The antigen–antibody complex was detected by incubating membranes with peroxidase-
coupled goat anti-mouse antibody (Santa Cruz Biotechnology) and revealed using an ECL
System (Bio-Rad Laboratories, Hercules, CA, USA) [76,77]. Blots were then exposed to film,
and the bands of interest were quantified using ImageJ software (version 1.52a) [78].

3.9. Statistical Analysis

Data are presented as mean values ± standard deviation, taken over 3 independent ex-
periments, with 3 replicates per experiment, unless otherwise stated. Statistical significance
was measured using analysis of variance (ANOVA) test. A p value ≤ 0.05 was considered
statistically significant [79].

4. Conclusions

The basic idea of this work was to obtain an extract from saffron, an easily available
natural food enriched in organic compounds with healthy biological activities, without re-
sorting to chemical-physical manipulations. This has allowed to obtain an extract enriched
in picrocrocin (at least 90%) that is potentially safe for human food use.

For the first time, in this research work, the hypolipidemic properties of picrocrocin
extracted from saffron stigmas have been highlighted. Interestingly, a non-statin-like
mode of action seems to underlie the effects of this natural compound on lipid homeostasis.
Remarkably, the observed increase in the LDLR expression level suggests a possible increase
in LDL re-uptake with consequent lowering of blood cholesterol levels, thus reducing
the cardiovascular risk associated with LDL cholesterol level. This healthy effect could
be particularly beneficial in patients for whom statin therapy is contraindicated or who
experience side effects after statin use. Furthermore, since an observed effect was the
concurrent reduction of FASN and GPAT expression levels, we are confident that picrocrocin
may reduce TG synthesis, thereby overcoming the known residual cardiovascular risk
observed in patients on statin therapy. In addition, data from clinical studies showed that
TG-rich lipoproteins and their cholesterol-enriched remnant particles have been related to
atherogenesis [80]. Hence, the combined hypolipidemic effect obtained by administering
an extract of natural origin could be an additional advantage.
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